Effects on titanium implant surfaces of chemical agents used for the treatment of peri-implantitis

The treatment of peri‐implantitis, which causes tissue deterioration surrounding osseointegrated implants, involves surface decontamination and cleaning. However, chemical cleaning agents may alter the structure of implant surfaces. We investigated three such cleaning solutions. Commercially pure (g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2010-07, Vol.94B (1), p.222-229
Hauptverfasser: Ungvári, Krisztina, Pelsöczi, István K., Kormos, Bernadett, Oszkó, Albert, Rakonczay, Zoltán, Kemény, Lajos, Radnai, Márta, Nagy, Katalin, Fazekas, András, Turzó, Kinga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The treatment of peri‐implantitis, which causes tissue deterioration surrounding osseointegrated implants, involves surface decontamination and cleaning. However, chemical cleaning agents may alter the structure of implant surfaces. We investigated three such cleaning solutions. Commercially pure (grade 4) machined titanium discs (CAMLOG Biotechnologies AG, Switzerland) were treated with 3% H2O2 (5 min), saturated citric acid (pH = 1) (1 min) or chlorhexidine gel (5 min), and their surface properties were examined by atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy (XPS). Human epithelial cell attachment (24‐h observation) and proliferation (72‐h observation) were investigated via dimethylthiazolyl‐diphenyltetrazolium bromide (MTT) and bicinchoninic acid (BCA) protein content assays. AFM revealed no significant difference in roughness of the three treated surfaces. XPS confirmed the constant presence of typical surface elements and an intact TiO2 layer on each surface. The XPS peaks after chlorhexidine gel treatment demonstrated CO and/or CO bond formation, due to chlorhexidine digluconate infiltrating the surface. MTT and BCA assays indicated similar epithelial cell attachments in the three groups; epithelial cell proliferation being significantly higher after H2O2 than after chlorhexidine gel treatment (not shown by BCA assays). These agents do not harm the Ti surface. Cleaning with H2O2 slightly enhances human epithelial cell growth, in contrast to chlorhexidine gel. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.
ISSN:1552-4973
1552-4981
1552-4981
DOI:10.1002/jbm.b.31644