Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis
This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyeth...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2010-08, Vol.94B (2), p.455-462 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 2 |
container_start_page | 455 |
container_title | Journal of biomedical materials research. Part B, Applied biomaterials |
container_volume | 94B |
creator | Cozad, Matthew J. Grant, David A. Bachman, Sharon L. Grant, Daniel N. Ramshaw, Bruce J. Grant, Sheila A. |
description | This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyethylene terephthalate (PET) ring, were explanted from humans. Scanning electron microscopy (SEM) was conducted to visually observe material defects while attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) was used to find chemical signs of surface degradation. Modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA) gave thermal stability profiles that showed changes in heat of fusion and rate of percent weight loss, respectively. ATR‐FTIR scans showed higher carbonyl peak areas as compared to pristine for 91% and 55% of ePTFE and PP explants, respectively. Ninety‐one percent of ePTFE explants also exhibited higher CH stretch peak areas. Seventy‐three percent of ePTFE explants had higher heats of fusion while 64% of PP explants had lower heats of fusion with respect to their corresponding pristines. Only 9% of PET explants exhibited a lower heat of fusion than pristine. Seventy‐three percent of ePTFE explants, 73% of PP explants, and only 18% of PET explants showed a decreased rate of percent weight loss as compared to pristine. The majority of the PP and ePTFE mesh explants demonstrated oxidation and crosslinking, respectively, while the PET ring exhibited breakdown at the sites of high stress. The results showed that all three materials exhibited varied degrees of chemical degradation suggesting that a lack of inertness in vivo contributes to hernia mesh failure. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010. |
doi_str_mv | 10.1002/jbm.b.31675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883027124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667710967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5275-c1b3d0c9805673279d52be32c77dbc37a8462aa49b565791d7d845b4de929ba53</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEou3CiTuKhBAHuos_4jjmBgXKR1uQKBRxsWxnomRx1qntiC7_hn-K96OLxIGeZkZ63pl57cmyBxjNMELk2Vz3Mz2juOTsVraPGSPTQlT49i7ndC87CGGe4BIxejfbI4jxihCxn_0-VRF8p2zITau8Mqvql4qdW-SuyeFqsGoRoc4HZ5eDd8PSwgIO1yXEdl3lSQNDG1tlU7PDXC3qlTCFrS5C9Kqxo_NupzGuH1zoIoTn-ecBTCLsWhlb8P06V3YZunAvu9Ok9eD-Nk6yL29enx-9nZ58PH539OJkahjhbGqwpjUyokKs5JRwUTOigRLDea0N5aoqSqJUITQrGRe45nVVMF3UIIjQitFJ9mTTN7m8HCFE2XfBgE3-wY1BVhVFhGNS3ExyUfCKUXwjySktC8IESeSjf8i5G316giBJWXKOkUi2JtnTDWW8C8FDIwff9covJUZydQwyHYPUcn0MiX647TnqHuode_37CXi8BVQwyjZeLUwX_nIUMSYwShzecD87C8v_zZTvX55eD59uNF2IcLXTKP9DJiOJvDg7lucXZ9-_ffj0Vb6ifwAqn9-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667710967</pqid></control><display><type>article</type><title>Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis</title><source>MEDLINE</source><source>Wiley-Blackwell Full Collection</source><creator>Cozad, Matthew J. ; Grant, David A. ; Bachman, Sharon L. ; Grant, Daniel N. ; Ramshaw, Bruce J. ; Grant, Sheila A.</creator><creatorcontrib>Cozad, Matthew J. ; Grant, David A. ; Bachman, Sharon L. ; Grant, Daniel N. ; Ramshaw, Bruce J. ; Grant, Sheila A.</creatorcontrib><description>This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyethylene terephthalate (PET) ring, were explanted from humans. Scanning electron microscopy (SEM) was conducted to visually observe material defects while attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) was used to find chemical signs of surface degradation. Modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA) gave thermal stability profiles that showed changes in heat of fusion and rate of percent weight loss, respectively. ATR‐FTIR scans showed higher carbonyl peak areas as compared to pristine for 91% and 55% of ePTFE and PP explants, respectively. Ninety‐one percent of ePTFE explants also exhibited higher CH stretch peak areas. Seventy‐three percent of ePTFE explants had higher heats of fusion while 64% of PP explants had lower heats of fusion with respect to their corresponding pristines. Only 9% of PET explants exhibited a lower heat of fusion than pristine. Seventy‐three percent of ePTFE explants, 73% of PP explants, and only 18% of PET explants showed a decreased rate of percent weight loss as compared to pristine. The majority of the PP and ePTFE mesh explants demonstrated oxidation and crosslinking, respectively, while the PET ring exhibited breakdown at the sites of high stress. The results showed that all three materials exhibited varied degrees of chemical degradation suggesting that a lack of inertness in vivo contributes to hernia mesh failure. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.</description><identifier>ISSN: 1552-4973</identifier><identifier>ISSN: 1552-4981</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.31675</identifier><identifier>PMID: 20578229</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Abdomen ; Biocompatible Materials ; Biological and medical sciences ; Biomedical materials ; Calorimetry ; Carbonyl compounds ; Carbonyls ; Chemical degradation ; Composite materials ; Crosslinking ; degradation ; Differential scanning calorimetry ; Explants ; Fourier analysis ; Fourier transforms ; Heat of fusion ; Hernia ; Hernia, Abdominal - therapy ; Hernias ; Humans ; implant retrieval ; Infrared spectroscopy ; Materials research ; Materials science ; Materials Testing - methods ; Medical sciences ; Oxidation ; Polyethylene ; Polyethylene terephthalate ; Polyethylene Terephthalates ; Polymers - chemistry ; Polymers - therapeutic use ; Polypropylene ; Polypropylenes ; Polytetrafluoroethylene ; PTFE ; Scanning electron microscopy ; Spectrum Analysis ; Stability analysis ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgery of the digestive system ; Surgical Mesh - standards ; Technology. Biomaterials. Equipments ; Thermal analysis ; Thermal stability ; Thermogravimetric analysis ; Thermogravimetry ; Weight loss</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2010-08, Vol.94B (2), p.455-462</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5275-c1b3d0c9805673279d52be32c77dbc37a8462aa49b565791d7d845b4de929ba53</citedby><cites>FETCH-LOGICAL-c5275-c1b3d0c9805673279d52be32c77dbc37a8462aa49b565791d7d845b4de929ba53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.31675$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.31675$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23055910$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20578229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cozad, Matthew J.</creatorcontrib><creatorcontrib>Grant, David A.</creatorcontrib><creatorcontrib>Bachman, Sharon L.</creatorcontrib><creatorcontrib>Grant, Daniel N.</creatorcontrib><creatorcontrib>Ramshaw, Bruce J.</creatorcontrib><creatorcontrib>Grant, Sheila A.</creatorcontrib><title>Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J. Biomed. Mater. Res</addtitle><description>This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyethylene terephthalate (PET) ring, were explanted from humans. Scanning electron microscopy (SEM) was conducted to visually observe material defects while attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) was used to find chemical signs of surface degradation. Modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA) gave thermal stability profiles that showed changes in heat of fusion and rate of percent weight loss, respectively. ATR‐FTIR scans showed higher carbonyl peak areas as compared to pristine for 91% and 55% of ePTFE and PP explants, respectively. Ninety‐one percent of ePTFE explants also exhibited higher CH stretch peak areas. Seventy‐three percent of ePTFE explants had higher heats of fusion while 64% of PP explants had lower heats of fusion with respect to their corresponding pristines. Only 9% of PET explants exhibited a lower heat of fusion than pristine. Seventy‐three percent of ePTFE explants, 73% of PP explants, and only 18% of PET explants showed a decreased rate of percent weight loss as compared to pristine. The majority of the PP and ePTFE mesh explants demonstrated oxidation and crosslinking, respectively, while the PET ring exhibited breakdown at the sites of high stress. The results showed that all three materials exhibited varied degrees of chemical degradation suggesting that a lack of inertness in vivo contributes to hernia mesh failure. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.</description><subject>Abdomen</subject><subject>Biocompatible Materials</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Calorimetry</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Chemical degradation</subject><subject>Composite materials</subject><subject>Crosslinking</subject><subject>degradation</subject><subject>Differential scanning calorimetry</subject><subject>Explants</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Heat of fusion</subject><subject>Hernia</subject><subject>Hernia, Abdominal - therapy</subject><subject>Hernias</subject><subject>Humans</subject><subject>implant retrieval</subject><subject>Infrared spectroscopy</subject><subject>Materials research</subject><subject>Materials science</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Oxidation</subject><subject>Polyethylene</subject><subject>Polyethylene terephthalate</subject><subject>Polyethylene Terephthalates</subject><subject>Polymers - chemistry</subject><subject>Polymers - therapeutic use</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Polytetrafluoroethylene</subject><subject>PTFE</subject><subject>Scanning electron microscopy</subject><subject>Spectrum Analysis</subject><subject>Stability analysis</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgery of the digestive system</subject><subject>Surgical Mesh - standards</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Thermal analysis</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><subject>Thermogravimetry</subject><subject>Weight loss</subject><issn>1552-4973</issn><issn>1552-4981</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEou3CiTuKhBAHuos_4jjmBgXKR1uQKBRxsWxnomRx1qntiC7_hn-K96OLxIGeZkZ63pl57cmyBxjNMELk2Vz3Mz2juOTsVraPGSPTQlT49i7ndC87CGGe4BIxejfbI4jxihCxn_0-VRF8p2zITau8Mqvql4qdW-SuyeFqsGoRoc4HZ5eDd8PSwgIO1yXEdl3lSQNDG1tlU7PDXC3qlTCFrS5C9Kqxo_NupzGuH1zoIoTn-ecBTCLsWhlb8P06V3YZunAvu9Ok9eD-Nk6yL29enx-9nZ58PH539OJkahjhbGqwpjUyokKs5JRwUTOigRLDea0N5aoqSqJUITQrGRe45nVVMF3UIIjQitFJ9mTTN7m8HCFE2XfBgE3-wY1BVhVFhGNS3ExyUfCKUXwjySktC8IESeSjf8i5G316giBJWXKOkUi2JtnTDWW8C8FDIwff9covJUZydQwyHYPUcn0MiX647TnqHuode_37CXi8BVQwyjZeLUwX_nIUMSYwShzecD87C8v_zZTvX55eD59uNF2IcLXTKP9DJiOJvDg7lucXZ9-_ffj0Vb6ifwAqn9-Q</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Cozad, Matthew J.</creator><creator>Grant, David A.</creator><creator>Bachman, Sharon L.</creator><creator>Grant, Daniel N.</creator><creator>Ramshaw, Bruce J.</creator><creator>Grant, Sheila A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201008</creationdate><title>Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis</title><author>Cozad, Matthew J. ; Grant, David A. ; Bachman, Sharon L. ; Grant, Daniel N. ; Ramshaw, Bruce J. ; Grant, Sheila A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5275-c1b3d0c9805673279d52be32c77dbc37a8462aa49b565791d7d845b4de929ba53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abdomen</topic><topic>Biocompatible Materials</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Calorimetry</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Chemical degradation</topic><topic>Composite materials</topic><topic>Crosslinking</topic><topic>degradation</topic><topic>Differential scanning calorimetry</topic><topic>Explants</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Heat of fusion</topic><topic>Hernia</topic><topic>Hernia, Abdominal - therapy</topic><topic>Hernias</topic><topic>Humans</topic><topic>implant retrieval</topic><topic>Infrared spectroscopy</topic><topic>Materials research</topic><topic>Materials science</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Oxidation</topic><topic>Polyethylene</topic><topic>Polyethylene terephthalate</topic><topic>Polyethylene Terephthalates</topic><topic>Polymers - chemistry</topic><topic>Polymers - therapeutic use</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Polytetrafluoroethylene</topic><topic>PTFE</topic><topic>Scanning electron microscopy</topic><topic>Spectrum Analysis</topic><topic>Stability analysis</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgery of the digestive system</topic><topic>Surgical Mesh - standards</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Thermal analysis</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><topic>Thermogravimetry</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cozad, Matthew J.</creatorcontrib><creatorcontrib>Grant, David A.</creatorcontrib><creatorcontrib>Bachman, Sharon L.</creatorcontrib><creatorcontrib>Grant, Daniel N.</creatorcontrib><creatorcontrib>Ramshaw, Bruce J.</creatorcontrib><creatorcontrib>Grant, Sheila A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cozad, Matthew J.</au><au>Grant, David A.</au><au>Bachman, Sharon L.</au><au>Grant, Daniel N.</au><au>Ramshaw, Bruce J.</au><au>Grant, Sheila A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-08</date><risdate>2010</risdate><volume>94B</volume><issue>2</issue><spage>455</spage><epage>462</epage><pages>455-462</pages><issn>1552-4973</issn><issn>1552-4981</issn><eissn>1552-4981</eissn><abstract>This study utilized spectral and thermal analysis of explanted hernia mesh materials to determine material inertness and elucidate reasons for hernia mesh explantation. Composite mesh materials, comprised of polypropylene (PP) and expanded polytetrafluoroethylene (ePTFE) mesh surrounded by a polyethylene terephthalate (PET) ring, were explanted from humans. Scanning electron microscopy (SEM) was conducted to visually observe material defects while attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR) was used to find chemical signs of surface degradation. Modulated differential scanning calorimetry (MDSC) and thermogravimetric analysis (TGA) gave thermal stability profiles that showed changes in heat of fusion and rate of percent weight loss, respectively. ATR‐FTIR scans showed higher carbonyl peak areas as compared to pristine for 91% and 55% of ePTFE and PP explants, respectively. Ninety‐one percent of ePTFE explants also exhibited higher CH stretch peak areas. Seventy‐three percent of ePTFE explants had higher heats of fusion while 64% of PP explants had lower heats of fusion with respect to their corresponding pristines. Only 9% of PET explants exhibited a lower heat of fusion than pristine. Seventy‐three percent of ePTFE explants, 73% of PP explants, and only 18% of PET explants showed a decreased rate of percent weight loss as compared to pristine. The majority of the PP and ePTFE mesh explants demonstrated oxidation and crosslinking, respectively, while the PET ring exhibited breakdown at the sites of high stress. The results showed that all three materials exhibited varied degrees of chemical degradation suggesting that a lack of inertness in vivo contributes to hernia mesh failure. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2010.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20578229</pmid><doi>10.1002/jbm.b.31675</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4973 |
ispartof | Journal of biomedical materials research. Part B, Applied biomaterials, 2010-08, Vol.94B (2), p.455-462 |
issn | 1552-4973 1552-4981 1552-4981 |
language | eng |
recordid | cdi_proquest_miscellaneous_883027124 |
source | MEDLINE; Wiley-Blackwell Full Collection |
subjects | Abdomen Biocompatible Materials Biological and medical sciences Biomedical materials Calorimetry Carbonyl compounds Carbonyls Chemical degradation Composite materials Crosslinking degradation Differential scanning calorimetry Explants Fourier analysis Fourier transforms Heat of fusion Hernia Hernia, Abdominal - therapy Hernias Humans implant retrieval Infrared spectroscopy Materials research Materials science Materials Testing - methods Medical sciences Oxidation Polyethylene Polyethylene terephthalate Polyethylene Terephthalates Polymers - chemistry Polymers - therapeutic use Polypropylene Polypropylenes Polytetrafluoroethylene PTFE Scanning electron microscopy Spectrum Analysis Stability analysis Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgery of the digestive system Surgical Mesh - standards Technology. Biomaterials. Equipments Thermal analysis Thermal stability Thermogravimetric analysis Thermogravimetry Weight loss |
title | Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: Spectral and thermal analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T14%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20characterization%20of%20explanted%20polypropylene,%20polyethylene%20terephthalate,%20and%20expanded%20polytetrafluoroethylene%20composites:%20Spectral%20and%20thermal%20analysis&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Cozad,%20Matthew%20J.&rft.date=2010-08&rft.volume=94B&rft.issue=2&rft.spage=455&rft.epage=462&rft.pages=455-462&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.31675&rft_dat=%3Cproquest_cross%3E2667710967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667710967&rft_id=info:pmid/20578229&rfr_iscdi=true |