Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia
J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) c...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2011-07, Vol.118 (1), p.69-78 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Journal of neurochemistry |
container_volume | 118 |
creator | Schönfeld, Peter Schlüter, Thomas Fischer, Klaus‐Dieter Reiser, Georg |
description | J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x
There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia. |
doi_str_mv | 10.1111/j.1471-4159.2011.07286.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883025153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883025153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6FyQI4qnbfHanDx5k0FVZdsGPc8gkaSZDdzImaZy-efK8v9FfYnpnXMGL1qUqqaeKt3gBgBjVuMTLXY1ZiyuGeVcThHGNWiKa-nAPrO4a98EKIUIqihg5A49S2iGEG9bgh-CMYI5bwfEK_LgK_uf3G5uyja531sB9GObJJ5WnqHJ59yrnGSrtTILGpey8zsMMx2CmoQAwby0cXQ56G7yJTg1QeQO1HYbSj_Dj9Se4jwXW2QUPnYc-xDEcnLrltvN-qR-DB70akn1yyufgy9s3n9fvqsvri_fr15eV5qhtqtZoJii3uKcNsh3dYGRFT62hplGq3XSoVT3fCN1RTVn5xZwRJixSBHe94PQcvDjuLZK-TuVqObq0aFXehilJISgiHHP6b7LFVHSENIV89he5C1P05YwFYpiQDhVIHCEdQ0rR9nIf3ajiLDGSi6dyJxfr5GKdXDyVt57KQxl9eto_bUZr7gZ_m1iA5ydAJa2GPiqvXfrDMVqUioV7deS-ucHO_y1AfrhaLxX9BTO_v6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871412290</pqid></control><display><type>article</type><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</creator><creatorcontrib>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</creatorcontrib><description>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x
There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2011.07286.x</identifier><identifier>PMID: 21517851</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenals. Adrenal axis. Renin-angiotensin system (diseases) ; Animals ; Biological and medical sciences ; Cell membranes ; Cellular biology ; Electron transport ; Electron transport chain ; Endocrinopathies ; Enzymatic activity ; Enzymes ; fatty acid ; Fatty Acids ; Fatty Acids, Unsaturated - pharmacology ; Fluorescence ; Glutamatergic system (aspartate and other excitatory aminoacids) ; Hydrogen Peroxide - metabolism ; Hypoxia ; Hypoxia - metabolism ; Intracellular signalling ; Medical sciences ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; NAD(P)H oxidase ; NADH Dehydrogenase - metabolism ; Neurochemistry ; Neuropharmacology ; Neurotransmitters. Neurotransmission. Receptors ; Non tumoral diseases. Target tissue resistance. Benign neoplasms ; Oxygen - metabolism ; PC12 cells ; PC12 Cells - drug effects ; PC12 Cells - metabolism ; Pharmacology. Drug treatments ; Pheochromocytoma cells ; Polyunsaturated fatty acids ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; reductase ; Superoxide</subject><ispartof>Journal of neurochemistry, 2011-07, Vol.118 (1), p.69-78</ispartof><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</citedby><cites>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2011.07286.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2011.07286.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24338981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21517851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönfeld, Peter</creatorcontrib><creatorcontrib>Schlüter, Thomas</creatorcontrib><creatorcontrib>Fischer, Klaus‐Dieter</creatorcontrib><creatorcontrib>Reiser, Georg</creatorcontrib><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x
There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</description><subject>Adrenals. Adrenal axis. Renin-angiotensin system (diseases)</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell membranes</subject><subject>Cellular biology</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Endocrinopathies</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>fatty acid</subject><subject>Fatty Acids</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Fluorescence</subject><subject>Glutamatergic system (aspartate and other excitatory aminoacids)</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Intracellular signalling</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>NAD(P)H oxidase</subject><subject>NADH Dehydrogenase - metabolism</subject><subject>Neurochemistry</subject><subject>Neuropharmacology</subject><subject>Neurotransmitters. Neurotransmission. Receptors</subject><subject>Non tumoral diseases. Target tissue resistance. Benign neoplasms</subject><subject>Oxygen - metabolism</subject><subject>PC12 cells</subject><subject>PC12 Cells - drug effects</subject><subject>PC12 Cells - metabolism</subject><subject>Pharmacology. Drug treatments</subject><subject>Pheochromocytoma cells</subject><subject>Polyunsaturated fatty acids</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>reductase</subject><subject>Superoxide</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6FyQI4qnbfHanDx5k0FVZdsGPc8gkaSZDdzImaZy-efK8v9FfYnpnXMGL1qUqqaeKt3gBgBjVuMTLXY1ZiyuGeVcThHGNWiKa-nAPrO4a98EKIUIqihg5A49S2iGEG9bgh-CMYI5bwfEK_LgK_uf3G5uyja531sB9GObJJ5WnqHJ59yrnGSrtTILGpey8zsMMx2CmoQAwby0cXQ56G7yJTg1QeQO1HYbSj_Dj9Se4jwXW2QUPnYc-xDEcnLrltvN-qR-DB70akn1yyufgy9s3n9fvqsvri_fr15eV5qhtqtZoJii3uKcNsh3dYGRFT62hplGq3XSoVT3fCN1RTVn5xZwRJixSBHe94PQcvDjuLZK-TuVqObq0aFXehilJISgiHHP6b7LFVHSENIV89he5C1P05YwFYpiQDhVIHCEdQ0rR9nIf3ajiLDGSi6dyJxfr5GKdXDyVt57KQxl9eto_bUZr7gZ_m1iA5ydAJa2GPiqvXfrDMVqUioV7deS-ucHO_y1AfrhaLxX9BTO_v6g</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Schönfeld, Peter</creator><creator>Schlüter, Thomas</creator><creator>Fischer, Klaus‐Dieter</creator><creator>Reiser, Georg</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201107</creationdate><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><author>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adrenals. Adrenal axis. Renin-angiotensin system (diseases)</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell membranes</topic><topic>Cellular biology</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Endocrinopathies</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>fatty acid</topic><topic>Fatty Acids</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Fluorescence</topic><topic>Glutamatergic system (aspartate and other excitatory aminoacids)</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Intracellular signalling</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>NAD(P)H oxidase</topic><topic>NADH Dehydrogenase - metabolism</topic><topic>Neurochemistry</topic><topic>Neuropharmacology</topic><topic>Neurotransmitters. Neurotransmission. Receptors</topic><topic>Non tumoral diseases. Target tissue resistance. Benign neoplasms</topic><topic>Oxygen - metabolism</topic><topic>PC12 cells</topic><topic>PC12 Cells - drug effects</topic><topic>PC12 Cells - metabolism</topic><topic>Pharmacology. Drug treatments</topic><topic>Pheochromocytoma cells</topic><topic>Polyunsaturated fatty acids</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>reductase</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönfeld, Peter</creatorcontrib><creatorcontrib>Schlüter, Thomas</creatorcontrib><creatorcontrib>Fischer, Klaus‐Dieter</creatorcontrib><creatorcontrib>Reiser, Georg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönfeld, Peter</au><au>Schlüter, Thomas</au><au>Fischer, Klaus‐Dieter</au><au>Reiser, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2011-07</date><risdate>2011</risdate><volume>118</volume><issue>1</issue><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x
There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21517851</pmid><doi>10.1111/j.1471-4159.2011.07286.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2011-07, Vol.118 (1), p.69-78 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_883025153 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | Adrenals. Adrenal axis. Renin-angiotensin system (diseases) Animals Biological and medical sciences Cell membranes Cellular biology Electron transport Electron transport chain Endocrinopathies Enzymatic activity Enzymes fatty acid Fatty Acids Fatty Acids, Unsaturated - pharmacology Fluorescence Glutamatergic system (aspartate and other excitatory aminoacids) Hydrogen Peroxide - metabolism Hypoxia Hypoxia - metabolism Intracellular signalling Medical sciences Metabolism Mitochondria Mitochondria - drug effects Mitochondria - metabolism NAD(P)H oxidase NADH Dehydrogenase - metabolism Neurochemistry Neuropharmacology Neurotransmitters. Neurotransmission. Receptors Non tumoral diseases. Target tissue resistance. Benign neoplasms Oxygen - metabolism PC12 cells PC12 Cells - drug effects PC12 Cells - metabolism Pharmacology. Drug treatments Pheochromocytoma cells Polyunsaturated fatty acids Rats Reactive oxygen species Reactive Oxygen Species - metabolism reductase Superoxide |
title | Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90esterified%20polyunsaturated%20fatty%20acids%20distinctly%20modulate%20the%20mitochondrial%20and%20cellular%20ROS%20production%20in%20normoxia%20and%20hypoxia&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Sch%C3%B6nfeld,%20Peter&rft.date=2011-07&rft.volume=118&rft.issue=1&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2011.07286.x&rft_dat=%3Cproquest_cross%3E883025153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871412290&rft_id=info:pmid/21517851&rfr_iscdi=true |