Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia

J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2011-07, Vol.118 (1), p.69-78
Hauptverfasser: Schönfeld, Peter, Schlüter, Thomas, Fischer, Klaus‐Dieter, Reiser, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue 1
container_start_page 69
container_title Journal of neurochemistry
container_volume 118
creator Schönfeld, Peter
Schlüter, Thomas
Fischer, Klaus‐Dieter
Reiser, Georg
description J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.
doi_str_mv 10.1111/j.1471-4159.2011.07286.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883025153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883025153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rj6FyQI4qnbfHanDx5k0FVZdsGPc8gkaSZDdzImaZy-efK8v9FfYnpnXMGL1qUqqaeKt3gBgBjVuMTLXY1ZiyuGeVcThHGNWiKa-nAPrO4a98EKIUIqihg5A49S2iGEG9bgh-CMYI5bwfEK_LgK_uf3G5uyja531sB9GObJJ5WnqHJ59yrnGSrtTILGpey8zsMMx2CmoQAwby0cXQ56G7yJTg1QeQO1HYbSj_Dj9Se4jwXW2QUPnYc-xDEcnLrltvN-qR-DB70akn1yyufgy9s3n9fvqsvri_fr15eV5qhtqtZoJii3uKcNsh3dYGRFT62hplGq3XSoVT3fCN1RTVn5xZwRJixSBHe94PQcvDjuLZK-TuVqObq0aFXehilJISgiHHP6b7LFVHSENIV89he5C1P05YwFYpiQDhVIHCEdQ0rR9nIf3ajiLDGSi6dyJxfr5GKdXDyVt57KQxl9eto_bUZr7gZ_m1iA5ydAJa2GPiqvXfrDMVqUioV7deS-ucHO_y1AfrhaLxX9BTO_v6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871412290</pqid></control><display><type>article</type><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</creator><creatorcontrib>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</creatorcontrib><description>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2011.07286.x</identifier><identifier>PMID: 21517851</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adrenals. Adrenal axis. Renin-angiotensin system (diseases) ; Animals ; Biological and medical sciences ; Cell membranes ; Cellular biology ; Electron transport ; Electron transport chain ; Endocrinopathies ; Enzymatic activity ; Enzymes ; fatty acid ; Fatty Acids ; Fatty Acids, Unsaturated - pharmacology ; Fluorescence ; Glutamatergic system (aspartate and other excitatory aminoacids) ; Hydrogen Peroxide - metabolism ; Hypoxia ; Hypoxia - metabolism ; Intracellular signalling ; Medical sciences ; Metabolism ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; NAD(P)H oxidase ; NADH Dehydrogenase - metabolism ; Neurochemistry ; Neuropharmacology ; Neurotransmitters. Neurotransmission. Receptors ; Non tumoral diseases. Target tissue resistance. Benign neoplasms ; Oxygen - metabolism ; PC12 cells ; PC12 Cells - drug effects ; PC12 Cells - metabolism ; Pharmacology. Drug treatments ; Pheochromocytoma cells ; Polyunsaturated fatty acids ; Rats ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; reductase ; Superoxide</subject><ispartof>Journal of neurochemistry, 2011-07, Vol.118 (1), p.69-78</ispartof><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry</rights><rights>2015 INIST-CNRS</rights><rights>2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</citedby><cites>FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2011.07286.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2011.07286.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24338981$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21517851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönfeld, Peter</creatorcontrib><creatorcontrib>Schlüter, Thomas</creatorcontrib><creatorcontrib>Fischer, Klaus‐Dieter</creatorcontrib><creatorcontrib>Reiser, Georg</creatorcontrib><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</description><subject>Adrenals. Adrenal axis. Renin-angiotensin system (diseases)</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell membranes</subject><subject>Cellular biology</subject><subject>Electron transport</subject><subject>Electron transport chain</subject><subject>Endocrinopathies</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>fatty acid</subject><subject>Fatty Acids</subject><subject>Fatty Acids, Unsaturated - pharmacology</subject><subject>Fluorescence</subject><subject>Glutamatergic system (aspartate and other excitatory aminoacids)</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Intracellular signalling</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>NAD(P)H oxidase</subject><subject>NADH Dehydrogenase - metabolism</subject><subject>Neurochemistry</subject><subject>Neuropharmacology</subject><subject>Neurotransmitters. Neurotransmission. Receptors</subject><subject>Non tumoral diseases. Target tissue resistance. Benign neoplasms</subject><subject>Oxygen - metabolism</subject><subject>PC12 cells</subject><subject>PC12 Cells - drug effects</subject><subject>PC12 Cells - metabolism</subject><subject>Pharmacology. Drug treatments</subject><subject>Pheochromocytoma cells</subject><subject>Polyunsaturated fatty acids</subject><subject>Rats</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>reductase</subject><subject>Superoxide</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2LFDEQhoMo7rj6FyQI4qnbfHanDx5k0FVZdsGPc8gkaSZDdzImaZy-efK8v9FfYnpnXMGL1qUqqaeKt3gBgBjVuMTLXY1ZiyuGeVcThHGNWiKa-nAPrO4a98EKIUIqihg5A49S2iGEG9bgh-CMYI5bwfEK_LgK_uf3G5uyja531sB9GObJJ5WnqHJ59yrnGSrtTILGpey8zsMMx2CmoQAwby0cXQ56G7yJTg1QeQO1HYbSj_Dj9Se4jwXW2QUPnYc-xDEcnLrltvN-qR-DB70akn1yyufgy9s3n9fvqsvri_fr15eV5qhtqtZoJii3uKcNsh3dYGRFT62hplGq3XSoVT3fCN1RTVn5xZwRJixSBHe94PQcvDjuLZK-TuVqObq0aFXehilJISgiHHP6b7LFVHSENIV89he5C1P05YwFYpiQDhVIHCEdQ0rR9nIf3ajiLDGSi6dyJxfr5GKdXDyVt57KQxl9eto_bUZr7gZ_m1iA5ydAJa2GPiqvXfrDMVqUioV7deS-ucHO_y1AfrhaLxX9BTO_v6g</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Schönfeld, Peter</creator><creator>Schlüter, Thomas</creator><creator>Fischer, Klaus‐Dieter</creator><creator>Reiser, Georg</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201107</creationdate><title>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</title><author>Schönfeld, Peter ; Schlüter, Thomas ; Fischer, Klaus‐Dieter ; Reiser, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5076-7dc4835e1f360e93b10e8f3ed3d6aa7b907af5b8c93c34d3d154248e0a219f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adrenals. Adrenal axis. Renin-angiotensin system (diseases)</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell membranes</topic><topic>Cellular biology</topic><topic>Electron transport</topic><topic>Electron transport chain</topic><topic>Endocrinopathies</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>fatty acid</topic><topic>Fatty Acids</topic><topic>Fatty Acids, Unsaturated - pharmacology</topic><topic>Fluorescence</topic><topic>Glutamatergic system (aspartate and other excitatory aminoacids)</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Intracellular signalling</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>NAD(P)H oxidase</topic><topic>NADH Dehydrogenase - metabolism</topic><topic>Neurochemistry</topic><topic>Neuropharmacology</topic><topic>Neurotransmitters. Neurotransmission. Receptors</topic><topic>Non tumoral diseases. Target tissue resistance. Benign neoplasms</topic><topic>Oxygen - metabolism</topic><topic>PC12 cells</topic><topic>PC12 Cells - drug effects</topic><topic>PC12 Cells - metabolism</topic><topic>Pharmacology. Drug treatments</topic><topic>Pheochromocytoma cells</topic><topic>Polyunsaturated fatty acids</topic><topic>Rats</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>reductase</topic><topic>Superoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönfeld, Peter</creatorcontrib><creatorcontrib>Schlüter, Thomas</creatorcontrib><creatorcontrib>Fischer, Klaus‐Dieter</creatorcontrib><creatorcontrib>Reiser, Georg</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönfeld, Peter</au><au>Schlüter, Thomas</au><au>Fischer, Klaus‐Dieter</au><au>Reiser, Georg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2011-07</date><risdate>2011</risdate><volume>118</volume><issue>1</issue><spage>69</spage><epage>78</epage><pages>69-78</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07286.x There is an intense discussion about the subcellular origin of the generation of reactive oxygen species (ROS) under hypoxia. Since this fundamental question can be addressed only in a cellular system, the O2‐sensing rat pheochromocytoma (PC12) cells were used. Severe hypoxia is known to elevate non‐esterified fatty acids. Therefore, the site(s) of ROS generation were studied in cells which we simultaneously exposed to hypoxia (1% oxygen) and free fatty acids (FFA). We obtained the following results: (i) at hypoxia, ROS generation increases in PC12 cells but not in mitochondria isolated therefrom. (ii) Non‐esterified polyunsaturated fatty acids (PUFA) enhance the ROS release from PC12 cells as well as from mitochondria, both in normoxia and in hypoxia. (iii) PUFA‐induced ROS generation by PC12 cells is not decreased either by inhibitors of the cell membrane NAD(P)H oxidase or inhibitors impairing the PUFA metabolism. (iv) PUFA‐induced ROS generation of mitochondria is paralleled by a decline of the NADH‐cytochrome c reductase activity (reflecting combined enzymatic activity of complex I plus III). (v) Mitochondrial superoxide indicator (MitoSOXred)‐loaded cells exposed to PUFA exhibit increased fluorescence indicating mitochondrial ROS generation. In conclusion, elevated PUFA levels enhance cellular ROS level in hypoxia, most likely by impairing the electron flux within the respiratory chain. Thus, we propose that PUFAs are likely to act as important extrinsic factor to enhance the mitochondria‐associated intracellular ROS signaling in hypoxia.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21517851</pmid><doi>10.1111/j.1471-4159.2011.07286.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2011-07, Vol.118 (1), p.69-78
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_883025153
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry
subjects Adrenals. Adrenal axis. Renin-angiotensin system (diseases)
Animals
Biological and medical sciences
Cell membranes
Cellular biology
Electron transport
Electron transport chain
Endocrinopathies
Enzymatic activity
Enzymes
fatty acid
Fatty Acids
Fatty Acids, Unsaturated - pharmacology
Fluorescence
Glutamatergic system (aspartate and other excitatory aminoacids)
Hydrogen Peroxide - metabolism
Hypoxia
Hypoxia - metabolism
Intracellular signalling
Medical sciences
Metabolism
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
NAD(P)H oxidase
NADH Dehydrogenase - metabolism
Neurochemistry
Neuropharmacology
Neurotransmitters. Neurotransmission. Receptors
Non tumoral diseases. Target tissue resistance. Benign neoplasms
Oxygen - metabolism
PC12 cells
PC12 Cells - drug effects
PC12 Cells - metabolism
Pharmacology. Drug treatments
Pheochromocytoma cells
Polyunsaturated fatty acids
Rats
Reactive oxygen species
Reactive Oxygen Species - metabolism
reductase
Superoxide
title Non‐esterified polyunsaturated fatty acids distinctly modulate the mitochondrial and cellular ROS production in normoxia and hypoxia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90esterified%20polyunsaturated%20fatty%20acids%20distinctly%20modulate%20the%20mitochondrial%20and%20cellular%20ROS%20production%20in%20normoxia%20and%20hypoxia&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Sch%C3%B6nfeld,%20Peter&rft.date=2011-07&rft.volume=118&rft.issue=1&rft.spage=69&rft.epage=78&rft.pages=69-78&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2011.07286.x&rft_dat=%3Cproquest_cross%3E883025153%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871412290&rft_id=info:pmid/21517851&rfr_iscdi=true