Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions

Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2010-12, Vol.10 (23), p.4213-4219
Hauptverfasser: Trotter, Matthew W.B, Sadowski, Pawel G, Dunkley, Tom P.J, Groen, Arnoud J, Lilley, Kathryn S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4219
container_issue 23
container_start_page 4213
container_title Proteomics (Weinheim)
container_volume 10
creator Trotter, Matthew W.B
Sadowski, Pawel G
Dunkley, Tom P.J
Groen, Arnoud J
Lilley, Kathryn S
description Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.
doi_str_mv 10.1002/pmic.201000359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883021210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883021210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNERUvLliV4xypTvzhO7CUaYDqihUpQVWJjeZyXyuDEUzsZOiv4BL6RL8FDyohdV36yzjvy9c2y50BnQGlxuu6smRU0zZRx-Sg7ggp4LkUFj_czZ4fZ0xi_Ugq1kPWT7LAAygUr6VH2Y9mtg99gQ-K4-v3zl0HnRqcDCRi9Gwfre7KxmkTbjW7QPfoxEt1rt402Et8SH27SrXNIkmdAn94TSaMHTbQJPkay0cEmPd6tMdgO-0E7Ynzf2J07nmQHrXYRn92fx9nVu7ef52f5-cfFcv76PDclEzIHymAlUipjmkKWJYgWBDQcOdVSGBRgat2yWssWJEeGIEoGRUVBG2wqxo6zV5M3vfJ2xDiozsZd2CmSEoLRAtK_PExCWVacMpnI2UT-DRqwVeuUUIetAqp27ahdO2rfTlp4ca8eVx02e_xfHQmQE_DdOtw-oFOXF8v5__J82rVxwLv9rg7fVFWzmqvrDwtVfbl4X18vztSbxL-c-FZ7pW-CjerqU9IxChK4FAX7A4Ftt_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814465039</pqid></control><display><type>article</type><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</creator><creatorcontrib>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</creatorcontrib><description>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</description><identifier>ISSN: 1615-9853</identifier><identifier>ISSN: 1615-9861</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201000359</identifier><identifier>PMID: 21058340</identifier><language>eng</language><publisher>Weinheim: Wiley‐VCH Verlag</publisher><subject>Algorithms ; Bioinformatics ; Computer Simulation ; Discriminant Analysis ; Least-Squares Analysis ; Organelle proteomics ; Organelles - chemistry ; Principal Component Analysis ; Protein localisation ; Proteome - chemistry ; Proteomics ; Statistical models ; Support vector machines</subject><ispartof>Proteomics (Weinheim), 2010-12, Vol.10 (23), p.4213-4219</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</citedby><cites>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201000359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201000359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21058340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trotter, Matthew W.B</creatorcontrib><creatorcontrib>Sadowski, Pawel G</creatorcontrib><creatorcontrib>Dunkley, Tom P.J</creatorcontrib><creatorcontrib>Groen, Arnoud J</creatorcontrib><creatorcontrib>Lilley, Kathryn S</creatorcontrib><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer Simulation</subject><subject>Discriminant Analysis</subject><subject>Least-Squares Analysis</subject><subject>Organelle proteomics</subject><subject>Organelles - chemistry</subject><subject>Principal Component Analysis</subject><subject>Protein localisation</subject><subject>Proteome - chemistry</subject><subject>Proteomics</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>1615-9853</issn><issn>1615-9861</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURSNERUvLliV4xypTvzhO7CUaYDqihUpQVWJjeZyXyuDEUzsZOiv4BL6RL8FDyohdV36yzjvy9c2y50BnQGlxuu6smRU0zZRx-Sg7ggp4LkUFj_czZ4fZ0xi_Ugq1kPWT7LAAygUr6VH2Y9mtg99gQ-K4-v3zl0HnRqcDCRi9Gwfre7KxmkTbjW7QPfoxEt1rt402Et8SH27SrXNIkmdAn94TSaMHTbQJPkay0cEmPd6tMdgO-0E7Ynzf2J07nmQHrXYRn92fx9nVu7ef52f5-cfFcv76PDclEzIHymAlUipjmkKWJYgWBDQcOdVSGBRgat2yWssWJEeGIEoGRUVBG2wqxo6zV5M3vfJ2xDiozsZd2CmSEoLRAtK_PExCWVacMpnI2UT-DRqwVeuUUIetAqp27ahdO2rfTlp4ca8eVx02e_xfHQmQE_DdOtw-oFOXF8v5__J82rVxwLv9rg7fVFWzmqvrDwtVfbl4X18vztSbxL-c-FZ7pW-CjerqU9IxChK4FAX7A4Ftt_s</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Trotter, Matthew W.B</creator><creator>Sadowski, Pawel G</creator><creator>Dunkley, Tom P.J</creator><creator>Groen, Arnoud J</creator><creator>Lilley, Kathryn S</creator><general>Wiley‐VCH Verlag</general><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20101201</creationdate><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><author>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer Simulation</topic><topic>Discriminant Analysis</topic><topic>Least-Squares Analysis</topic><topic>Organelle proteomics</topic><topic>Organelles - chemistry</topic><topic>Principal Component Analysis</topic><topic>Protein localisation</topic><topic>Proteome - chemistry</topic><topic>Proteomics</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trotter, Matthew W.B</creatorcontrib><creatorcontrib>Sadowski, Pawel G</creatorcontrib><creatorcontrib>Dunkley, Tom P.J</creatorcontrib><creatorcontrib>Groen, Arnoud J</creatorcontrib><creatorcontrib>Lilley, Kathryn S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trotter, Matthew W.B</au><au>Sadowski, Pawel G</au><au>Dunkley, Tom P.J</au><au>Groen, Arnoud J</au><au>Lilley, Kathryn S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>10</volume><issue>23</issue><spage>4213</spage><epage>4219</epage><pages>4213-4219</pages><issn>1615-9853</issn><issn>1615-9861</issn><eissn>1615-9861</eissn><abstract>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</abstract><cop>Weinheim</cop><pub>Wiley‐VCH Verlag</pub><pmid>21058340</pmid><doi>10.1002/pmic.201000359</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2010-12, Vol.10 (23), p.4213-4219
issn 1615-9853
1615-9861
1615-9861
language eng
recordid cdi_proquest_miscellaneous_883021210
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Bioinformatics
Computer Simulation
Discriminant Analysis
Least-Squares Analysis
Organelle proteomics
Organelles - chemistry
Principal Component Analysis
Protein localisation
Proteome - chemistry
Proteomics
Statistical models
Support vector machines
title Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20sub%E2%80%90cellular%20resolution%20via%20simultaneous%20analysis%20of%20organelle%20proteomics%20data%20across%20varied%20experimental%20conditions&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Trotter,%20Matthew%20W.B&rft.date=2010-12-01&rft.volume=10&rft.issue=23&rft.spage=4213&rft.epage=4219&rft.pages=4213-4219&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201000359&rft_dat=%3Cproquest_cross%3E883021210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=814465039&rft_id=info:pmid/21058340&rfr_iscdi=true