Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance d...
Gespeichert in:
Veröffentlicht in: | Proteomics (Weinheim) 2010-12, Vol.10 (23), p.4213-4219 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4219 |
---|---|
container_issue | 23 |
container_start_page | 4213 |
container_title | Proteomics (Weinheim) |
container_volume | 10 |
creator | Trotter, Matthew W.B Sadowski, Pawel G Dunkley, Tom P.J Groen, Arnoud J Lilley, Kathryn S |
description | Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles. |
doi_str_mv | 10.1002/pmic.201000359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883021210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883021210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNERUvLliV4xypTvzhO7CUaYDqihUpQVWJjeZyXyuDEUzsZOiv4BL6RL8FDyohdV36yzjvy9c2y50BnQGlxuu6smRU0zZRx-Sg7ggp4LkUFj_czZ4fZ0xi_Ugq1kPWT7LAAygUr6VH2Y9mtg99gQ-K4-v3zl0HnRqcDCRi9Gwfre7KxmkTbjW7QPfoxEt1rt402Et8SH27SrXNIkmdAn94TSaMHTbQJPkay0cEmPd6tMdgO-0E7Ynzf2J07nmQHrXYRn92fx9nVu7ef52f5-cfFcv76PDclEzIHymAlUipjmkKWJYgWBDQcOdVSGBRgat2yWssWJEeGIEoGRUVBG2wqxo6zV5M3vfJ2xDiozsZd2CmSEoLRAtK_PExCWVacMpnI2UT-DRqwVeuUUIetAqp27ahdO2rfTlp4ca8eVx02e_xfHQmQE_DdOtw-oFOXF8v5__J82rVxwLv9rg7fVFWzmqvrDwtVfbl4X18vztSbxL-c-FZ7pW-CjerqU9IxChK4FAX7A4Ftt_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>814465039</pqid></control><display><type>article</type><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</creator><creatorcontrib>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</creatorcontrib><description>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</description><identifier>ISSN: 1615-9853</identifier><identifier>ISSN: 1615-9861</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.201000359</identifier><identifier>PMID: 21058340</identifier><language>eng</language><publisher>Weinheim: Wiley‐VCH Verlag</publisher><subject>Algorithms ; Bioinformatics ; Computer Simulation ; Discriminant Analysis ; Least-Squares Analysis ; Organelle proteomics ; Organelles - chemistry ; Principal Component Analysis ; Protein localisation ; Proteome - chemistry ; Proteomics ; Statistical models ; Support vector machines</subject><ispartof>Proteomics (Weinheim), 2010-12, Vol.10 (23), p.4213-4219</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</citedby><cites>FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.201000359$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.201000359$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21058340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trotter, Matthew W.B</creatorcontrib><creatorcontrib>Sadowski, Pawel G</creatorcontrib><creatorcontrib>Dunkley, Tom P.J</creatorcontrib><creatorcontrib>Groen, Arnoud J</creatorcontrib><creatorcontrib>Lilley, Kathryn S</creatorcontrib><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer Simulation</subject><subject>Discriminant Analysis</subject><subject>Least-Squares Analysis</subject><subject>Organelle proteomics</subject><subject>Organelles - chemistry</subject><subject>Principal Component Analysis</subject><subject>Protein localisation</subject><subject>Proteome - chemistry</subject><subject>Proteomics</subject><subject>Statistical models</subject><subject>Support vector machines</subject><issn>1615-9853</issn><issn>1615-9861</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURSNERUvLliV4xypTvzhO7CUaYDqihUpQVWJjeZyXyuDEUzsZOiv4BL6RL8FDyohdV36yzjvy9c2y50BnQGlxuu6smRU0zZRx-Sg7ggp4LkUFj_czZ4fZ0xi_Ugq1kPWT7LAAygUr6VH2Y9mtg99gQ-K4-v3zl0HnRqcDCRi9Gwfre7KxmkTbjW7QPfoxEt1rt402Et8SH27SrXNIkmdAn94TSaMHTbQJPkay0cEmPd6tMdgO-0E7Ynzf2J07nmQHrXYRn92fx9nVu7ef52f5-cfFcv76PDclEzIHymAlUipjmkKWJYgWBDQcOdVSGBRgat2yWssWJEeGIEoGRUVBG2wqxo6zV5M3vfJ2xDiozsZd2CmSEoLRAtK_PExCWVacMpnI2UT-DRqwVeuUUIetAqp27ahdO2rfTlp4ca8eVx02e_xfHQmQE_DdOtw-oFOXF8v5__J82rVxwLv9rg7fVFWzmqvrDwtVfbl4X18vztSbxL-c-FZ7pW-CjerqU9IxChK4FAX7A4Ftt_s</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Trotter, Matthew W.B</creator><creator>Sadowski, Pawel G</creator><creator>Dunkley, Tom P.J</creator><creator>Groen, Arnoud J</creator><creator>Lilley, Kathryn S</creator><general>Wiley‐VCH Verlag</general><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20101201</creationdate><title>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</title><author>Trotter, Matthew W.B ; Sadowski, Pawel G ; Dunkley, Tom P.J ; Groen, Arnoud J ; Lilley, Kathryn S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-1031b8861ccd294418f181d5e50a98ce81c7af37a9f195e3e184312601aced633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer Simulation</topic><topic>Discriminant Analysis</topic><topic>Least-Squares Analysis</topic><topic>Organelle proteomics</topic><topic>Organelles - chemistry</topic><topic>Principal Component Analysis</topic><topic>Protein localisation</topic><topic>Proteome - chemistry</topic><topic>Proteomics</topic><topic>Statistical models</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trotter, Matthew W.B</creatorcontrib><creatorcontrib>Sadowski, Pawel G</creatorcontrib><creatorcontrib>Dunkley, Tom P.J</creatorcontrib><creatorcontrib>Groen, Arnoud J</creatorcontrib><creatorcontrib>Lilley, Kathryn S</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trotter, Matthew W.B</au><au>Sadowski, Pawel G</au><au>Dunkley, Tom P.J</au><au>Groen, Arnoud J</au><au>Lilley, Kathryn S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>10</volume><issue>23</issue><spage>4213</spage><epage>4219</epage><pages>4213-4219</pages><issn>1615-9853</issn><issn>1615-9861</issn><eissn>1615-9861</eissn><abstract>Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub‐cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome‐wide localisation in scenarios wherein perturbation may prompt dynamic re‐distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub‐cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single‐gradient data, we observe significant improvement in protein-organelle association via both a non‐linear support vector machine algorithm and partial least‐squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub‐cellular organelles.</abstract><cop>Weinheim</cop><pub>Wiley‐VCH Verlag</pub><pmid>21058340</pmid><doi>10.1002/pmic.201000359</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-9853 |
ispartof | Proteomics (Weinheim), 2010-12, Vol.10 (23), p.4213-4219 |
issn | 1615-9853 1615-9861 1615-9861 |
language | eng |
recordid | cdi_proquest_miscellaneous_883021210 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Bioinformatics Computer Simulation Discriminant Analysis Least-Squares Analysis Organelle proteomics Organelles - chemistry Principal Component Analysis Protein localisation Proteome - chemistry Proteomics Statistical models Support vector machines |
title | Improved sub‐cellular resolution via simultaneous analysis of organelle proteomics data across varied experimental conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A20%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20sub%E2%80%90cellular%20resolution%20via%20simultaneous%20analysis%20of%20organelle%20proteomics%20data%20across%20varied%20experimental%20conditions&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Trotter,%20Matthew%20W.B&rft.date=2010-12-01&rft.volume=10&rft.issue=23&rft.spage=4213&rft.epage=4219&rft.pages=4213-4219&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.201000359&rft_dat=%3Cproquest_cross%3E883021210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=814465039&rft_id=info:pmid/21058340&rfr_iscdi=true |