pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells

Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of gene medicine 2010-04, Vol.12 (4), p.323-332
Hauptverfasser: Marie, Corinne, Vandermeulen, Gaëlle, Quiviger, Mickaël, Richard, Magali, Préat, Véronique, Scherman, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 4
container_start_page 323
container_title The journal of gene medicine
container_volume 12
creator Marie, Corinne
Vandermeulen, Gaëlle
Quiviger, Mickaël
Richard, Magali
Préat, Véronique
Scherman, Daniel
description Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jgm.1441
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883014868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3918820181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</originalsourceid><addsrcrecordid>eNqF0Ulv1DAYBuAIgeiGxC9AljjQQ1PseD-WUTssbRmxCG6W43yZepqtdgKdE38dj2boAQlxsi09fr28Wfac4FOCcfF6tWxPCWPkUbZPeEHyouDscZpjrXOm1fe97CDGFcZEKqWfZnsFLrBmSu5nv4aLs0_xBC0aG1tfRVQHANTXyHajL30_eocCRB9H2zlArQ23EJKvfBwau0Y3fnmTN_ADGjQG28UldIDgfkh7ou875DvUTtE1cILibVrYrkLj1PZTQA6aJh5lT2rbRHi2Gw-zrxfnX2Zv88uP83ezs8vcMaJI7mSlFBYUlxo7UglFqSpBSc0tVFQzkFpKwWpXCSpwUQouZc0ts6QUQJ2ih9mrbe4Q-rsJ4mhaHzc3sB30UzRKUUyYEv-XMh0tMOM0yZd_yVV6V5eeYYjkXLOCap3U8Va50McYoDZD8Okf14Zgs2nPpPbMpr1EX-wCp7KF6gH-qSuBfAt--gbW_wwy7-dXu8CdT_3B_YNPJRohqeTm2_XczD7z-YfFm4W5or8BijyyZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755942399</pqid></control><display><type>article</type><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</creator><creatorcontrib>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</creatorcontrib><description>Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1099-498X</identifier><identifier>ISSN: 1521-2254</identifier><identifier>EISSN: 1521-2254</identifier><identifier>DOI: 10.1002/jgm.1441</identifier><identifier>PMID: 20209487</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amber ; Animals ; Antibiotic resistance ; Auxotrophy ; Biomarkers - metabolism ; biosafety ; Cell Line, Tumor ; DNA delivery ; DNA Primers - genetics ; Drug Resistance, Microbial - genetics ; Electroporation ; electrotransfer ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Expression vectors ; Female ; Gene therapy ; Gene transfer ; Genes, Suppressor ; Genetic Therapy - methods ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; Kanamycin ; Luciferases ; Mice ; Mice, Inbred BALB C ; Muscles ; Nonsense mutation ; nonviral ; Pharmaceuticals ; plasmid vector ; Plasmids ; Plasmids - genetics ; Plasmids - metabolism ; Skin ; ThyA protein ; Thymidine ; Thymidylate Synthase - genetics ; Transgenes</subject><ispartof>The journal of gene medicine, 2010-04, Vol.12 (4), p.323-332</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</citedby><cites>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgm.1441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgm.1441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20209487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marie, Corinne</creatorcontrib><creatorcontrib>Vandermeulen, Gaëlle</creatorcontrib><creatorcontrib>Quiviger, Mickaël</creatorcontrib><creatorcontrib>Richard, Magali</creatorcontrib><creatorcontrib>Préat, Véronique</creatorcontrib><creatorcontrib>Scherman, Daniel</creatorcontrib><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><title>The journal of gene medicine</title><addtitle>J. Gene Med</addtitle><description>Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Amber</subject><subject>Animals</subject><subject>Antibiotic resistance</subject><subject>Auxotrophy</subject><subject>Biomarkers - metabolism</subject><subject>biosafety</subject><subject>Cell Line, Tumor</subject><subject>DNA delivery</subject><subject>DNA Primers - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Electroporation</subject><subject>electrotransfer</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Expression vectors</subject><subject>Female</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genes, Suppressor</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>Kanamycin</subject><subject>Luciferases</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Muscles</subject><subject>Nonsense mutation</subject><subject>nonviral</subject><subject>Pharmaceuticals</subject><subject>plasmid vector</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Skin</subject><subject>ThyA protein</subject><subject>Thymidine</subject><subject>Thymidylate Synthase - genetics</subject><subject>Transgenes</subject><issn>1099-498X</issn><issn>1521-2254</issn><issn>1521-2254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Ulv1DAYBuAIgeiGxC9AljjQQ1PseD-WUTssbRmxCG6W43yZepqtdgKdE38dj2boAQlxsi09fr28Wfac4FOCcfF6tWxPCWPkUbZPeEHyouDscZpjrXOm1fe97CDGFcZEKqWfZnsFLrBmSu5nv4aLs0_xBC0aG1tfRVQHANTXyHajL30_eocCRB9H2zlArQ23EJKvfBwau0Y3fnmTN_ADGjQG28UldIDgfkh7ou875DvUTtE1cILibVrYrkLj1PZTQA6aJh5lT2rbRHi2Gw-zrxfnX2Zv88uP83ezs8vcMaJI7mSlFBYUlxo7UglFqSpBSc0tVFQzkFpKwWpXCSpwUQouZc0ts6QUQJ2ih9mrbe4Q-rsJ4mhaHzc3sB30UzRKUUyYEv-XMh0tMOM0yZd_yVV6V5eeYYjkXLOCap3U8Va50McYoDZD8Okf14Zgs2nPpPbMpr1EX-wCp7KF6gH-qSuBfAt--gbW_wwy7-dXu8CdT_3B_YNPJRohqeTm2_XczD7z-YfFm4W5or8BijyyZQ</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Marie, Corinne</creator><creator>Vandermeulen, Gaëlle</creator><creator>Quiviger, Mickaël</creator><creator>Richard, Magali</creator><creator>Préat, Véronique</creator><creator>Scherman, Daniel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>C1K</scope></search><sort><creationdate>201004</creationdate><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><author>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amber</topic><topic>Animals</topic><topic>Antibiotic resistance</topic><topic>Auxotrophy</topic><topic>Biomarkers - metabolism</topic><topic>biosafety</topic><topic>Cell Line, Tumor</topic><topic>DNA delivery</topic><topic>DNA Primers - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Electroporation</topic><topic>electrotransfer</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Expression vectors</topic><topic>Female</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genes, Suppressor</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>Kanamycin</topic><topic>Luciferases</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Muscles</topic><topic>Nonsense mutation</topic><topic>nonviral</topic><topic>Pharmaceuticals</topic><topic>plasmid vector</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Skin</topic><topic>ThyA protein</topic><topic>Thymidine</topic><topic>Thymidylate Synthase - genetics</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marie, Corinne</creatorcontrib><creatorcontrib>Vandermeulen, Gaëlle</creatorcontrib><creatorcontrib>Quiviger, Mickaël</creatorcontrib><creatorcontrib>Richard, Magali</creatorcontrib><creatorcontrib>Préat, Véronique</creatorcontrib><creatorcontrib>Scherman, Daniel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The journal of gene medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marie, Corinne</au><au>Vandermeulen, Gaëlle</au><au>Quiviger, Mickaël</au><au>Richard, Magali</au><au>Préat, Véronique</au><au>Scherman, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</atitle><jtitle>The journal of gene medicine</jtitle><addtitle>J. Gene Med</addtitle><date>2010-04</date><risdate>2010</risdate><volume>12</volume><issue>4</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1099-498X</issn><issn>1521-2254</issn><eissn>1521-2254</eissn><abstract>Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues. Results The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid. Conclusions Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>20209487</pmid><doi>10.1002/jgm.1441</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1099-498X
ispartof The journal of gene medicine, 2010-04, Vol.12 (4), p.323-332
issn 1099-498X
1521-2254
1521-2254
language eng
recordid cdi_proquest_miscellaneous_883014868
source MEDLINE; Wiley Online Library All Journals
subjects Amber
Animals
Antibiotic resistance
Auxotrophy
Biomarkers - metabolism
biosafety
Cell Line, Tumor
DNA delivery
DNA Primers - genetics
Drug Resistance, Microbial - genetics
Electroporation
electrotransfer
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - genetics
Expression vectors
Female
Gene therapy
Gene transfer
Genes, Suppressor
Genetic Therapy - methods
Genetic Vectors - genetics
Genetic Vectors - metabolism
Kanamycin
Luciferases
Mice
Mice, Inbred BALB C
Muscles
Nonsense mutation
nonviral
Pharmaceuticals
plasmid vector
Plasmids
Plasmids - genetics
Plasmids - metabolism
Skin
ThyA protein
Thymidine
Thymidylate Synthase - genetics
Transgenes
title pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pFARs,%20Plasmids%20free%20of%20antibiotic%20resistance%20markers,%20display%20high-level%20transgene%20expression%20in%20muscle,%20skin%20and%20tumour%20cells&rft.jtitle=The%20journal%20of%20gene%20medicine&rft.au=Marie,%20Corinne&rft.date=2010-04&rft.volume=12&rft.issue=4&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1099-498X&rft.eissn=1521-2254&rft_id=info:doi/10.1002/jgm.1441&rft_dat=%3Cproquest_cross%3E3918820181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755942399&rft_id=info:pmid/20209487&rfr_iscdi=true