pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells
Background Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system. Methods The proposed s...
Gespeichert in:
Veröffentlicht in: | The journal of gene medicine 2010-04, Vol.12 (4), p.323-332 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 4 |
container_start_page | 323 |
container_title | The journal of gene medicine |
container_volume | 12 |
creator | Marie, Corinne Vandermeulen, Gaëlle Quiviger, Mickaël Richard, Magali Préat, Véronique Scherman, Daniel |
description | Background
Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system.
Methods
The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues.
Results
The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid.
Conclusions
Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/jgm.1441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883014868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3918820181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</originalsourceid><addsrcrecordid>eNqF0Ulv1DAYBuAIgeiGxC9AljjQQ1PseD-WUTssbRmxCG6W43yZepqtdgKdE38dj2boAQlxsi09fr28Wfac4FOCcfF6tWxPCWPkUbZPeEHyouDscZpjrXOm1fe97CDGFcZEKqWfZnsFLrBmSu5nv4aLs0_xBC0aG1tfRVQHANTXyHajL30_eocCRB9H2zlArQ23EJKvfBwau0Y3fnmTN_ADGjQG28UldIDgfkh7ou875DvUTtE1cILibVrYrkLj1PZTQA6aJh5lT2rbRHi2Gw-zrxfnX2Zv88uP83ezs8vcMaJI7mSlFBYUlxo7UglFqSpBSc0tVFQzkFpKwWpXCSpwUQouZc0ts6QUQJ2ih9mrbe4Q-rsJ4mhaHzc3sB30UzRKUUyYEv-XMh0tMOM0yZd_yVV6V5eeYYjkXLOCap3U8Va50McYoDZD8Okf14Zgs2nPpPbMpr1EX-wCp7KF6gH-qSuBfAt--gbW_wwy7-dXu8CdT_3B_YNPJRohqeTm2_XczD7z-YfFm4W5or8BijyyZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755942399</pqid></control><display><type>article</type><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</creator><creatorcontrib>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</creatorcontrib><description>Background
Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system.
Methods
The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues.
Results
The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid.
Conclusions
Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1099-498X</identifier><identifier>ISSN: 1521-2254</identifier><identifier>EISSN: 1521-2254</identifier><identifier>DOI: 10.1002/jgm.1441</identifier><identifier>PMID: 20209487</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amber ; Animals ; Antibiotic resistance ; Auxotrophy ; Biomarkers - metabolism ; biosafety ; Cell Line, Tumor ; DNA delivery ; DNA Primers - genetics ; Drug Resistance, Microbial - genetics ; Electroporation ; electrotransfer ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Expression vectors ; Female ; Gene therapy ; Gene transfer ; Genes, Suppressor ; Genetic Therapy - methods ; Genetic Vectors - genetics ; Genetic Vectors - metabolism ; Kanamycin ; Luciferases ; Mice ; Mice, Inbred BALB C ; Muscles ; Nonsense mutation ; nonviral ; Pharmaceuticals ; plasmid vector ; Plasmids ; Plasmids - genetics ; Plasmids - metabolism ; Skin ; ThyA protein ; Thymidine ; Thymidylate Synthase - genetics ; Transgenes</subject><ispartof>The journal of gene medicine, 2010-04, Vol.12 (4), p.323-332</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</citedby><cites>FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgm.1441$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgm.1441$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20209487$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marie, Corinne</creatorcontrib><creatorcontrib>Vandermeulen, Gaëlle</creatorcontrib><creatorcontrib>Quiviger, Mickaël</creatorcontrib><creatorcontrib>Richard, Magali</creatorcontrib><creatorcontrib>Préat, Véronique</creatorcontrib><creatorcontrib>Scherman, Daniel</creatorcontrib><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><title>The journal of gene medicine</title><addtitle>J. Gene Med</addtitle><description>Background
Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system.
Methods
The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues.
Results
The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid.
Conclusions
Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Amber</subject><subject>Animals</subject><subject>Antibiotic resistance</subject><subject>Auxotrophy</subject><subject>Biomarkers - metabolism</subject><subject>biosafety</subject><subject>Cell Line, Tumor</subject><subject>DNA delivery</subject><subject>DNA Primers - genetics</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Electroporation</subject><subject>electrotransfer</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Expression vectors</subject><subject>Female</subject><subject>Gene therapy</subject><subject>Gene transfer</subject><subject>Genes, Suppressor</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - metabolism</subject><subject>Kanamycin</subject><subject>Luciferases</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Muscles</subject><subject>Nonsense mutation</subject><subject>nonviral</subject><subject>Pharmaceuticals</subject><subject>plasmid vector</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Skin</subject><subject>ThyA protein</subject><subject>Thymidine</subject><subject>Thymidylate Synthase - genetics</subject><subject>Transgenes</subject><issn>1099-498X</issn><issn>1521-2254</issn><issn>1521-2254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Ulv1DAYBuAIgeiGxC9AljjQQ1PseD-WUTssbRmxCG6W43yZepqtdgKdE38dj2boAQlxsi09fr28Wfac4FOCcfF6tWxPCWPkUbZPeEHyouDscZpjrXOm1fe97CDGFcZEKqWfZnsFLrBmSu5nv4aLs0_xBC0aG1tfRVQHANTXyHajL30_eocCRB9H2zlArQ23EJKvfBwau0Y3fnmTN_ADGjQG28UldIDgfkh7ou875DvUTtE1cILibVrYrkLj1PZTQA6aJh5lT2rbRHi2Gw-zrxfnX2Zv88uP83ezs8vcMaJI7mSlFBYUlxo7UglFqSpBSc0tVFQzkFpKwWpXCSpwUQouZc0ts6QUQJ2ih9mrbe4Q-rsJ4mhaHzc3sB30UzRKUUyYEv-XMh0tMOM0yZd_yVV6V5eeYYjkXLOCap3U8Va50McYoDZD8Okf14Zgs2nPpPbMpr1EX-wCp7KF6gH-qSuBfAt--gbW_wwy7-dXu8CdT_3B_YNPJRohqeTm2_XczD7z-YfFm4W5or8BijyyZQ</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Marie, Corinne</creator><creator>Vandermeulen, Gaëlle</creator><creator>Quiviger, Mickaël</creator><creator>Richard, Magali</creator><creator>Préat, Véronique</creator><creator>Scherman, Daniel</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>C1K</scope></search><sort><creationdate>201004</creationdate><title>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</title><author>Marie, Corinne ; Vandermeulen, Gaëlle ; Quiviger, Mickaël ; Richard, Magali ; Préat, Véronique ; Scherman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4181-c7d880630b90c1d68338be8795aed394e797764fcd63602b6577f5a4a1b6e3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amber</topic><topic>Animals</topic><topic>Antibiotic resistance</topic><topic>Auxotrophy</topic><topic>Biomarkers - metabolism</topic><topic>biosafety</topic><topic>Cell Line, Tumor</topic><topic>DNA delivery</topic><topic>DNA Primers - genetics</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Electroporation</topic><topic>electrotransfer</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Expression vectors</topic><topic>Female</topic><topic>Gene therapy</topic><topic>Gene transfer</topic><topic>Genes, Suppressor</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - metabolism</topic><topic>Kanamycin</topic><topic>Luciferases</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Muscles</topic><topic>Nonsense mutation</topic><topic>nonviral</topic><topic>Pharmaceuticals</topic><topic>plasmid vector</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Skin</topic><topic>ThyA protein</topic><topic>Thymidine</topic><topic>Thymidylate Synthase - genetics</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marie, Corinne</creatorcontrib><creatorcontrib>Vandermeulen, Gaëlle</creatorcontrib><creatorcontrib>Quiviger, Mickaël</creatorcontrib><creatorcontrib>Richard, Magali</creatorcontrib><creatorcontrib>Préat, Véronique</creatorcontrib><creatorcontrib>Scherman, Daniel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The journal of gene medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marie, Corinne</au><au>Vandermeulen, Gaëlle</au><au>Quiviger, Mickaël</au><au>Richard, Magali</au><au>Préat, Véronique</au><au>Scherman, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells</atitle><jtitle>The journal of gene medicine</jtitle><addtitle>J. Gene Med</addtitle><date>2010-04</date><risdate>2010</risdate><volume>12</volume><issue>4</issue><spage>323</spage><epage>332</epage><pages>323-332</pages><issn>1099-498X</issn><issn>1521-2254</issn><eissn>1521-2254</eissn><abstract>Background
Nonviral gene therapy requires a high yield and a low cost production of eukaryotic expression vectors that meet defined criteria such as biosafety and quality of pharmaceutical grade. To fulfil these objectives, we designed a novel antibiotic‐free selection system.
Methods
The proposed strategy relies on the suppression of a chromosomal amber mutation by a plasmid‐borne function. We first introduced a nonsense mutation into the essential Escherichia coli thyA gene, resulting in thymidine auxotrophy. The bacterial strain was optimized for the production of small and novel plasmids free of antibiotic resistance markers (pFARs) and encoding an amber suppressor t‐RNA. Finally, the potentiality of pFARs as eukaryotic expression vectors was assessed by monitoring luciferase activities after electrotransfer of LUC‐encoding plasmids into various tissues.
Results
The introduction of pFARs into the optimized bacterial strain restored normal growth to the auxotrophic mutant and allowed an efficient production of monomeric supercoiled plasmids. The electrotransfer of LUC‐encoding pFAR into muscle led to high luciferase activities, demonstrating an efficient gene delivery. In transplanted tumours, transgene expression levels were superior after electrotransfer of the pFAR derivative compared to a plasmid carrying a kanamycin resistance gene. Finally, in skin, whereas luciferase activities decreased within 3 weeks after intradermal electrotransfer of a conventional expression vector, sustained luciferase expression was observed with the pFAR plasmid.
Conclusions
Thus, we have designed a novel strategy for the efficient production of biosafe plasmids and demonstrated their potentiality for nonviral gene delivery and high‐level transgene expression in several tissues. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>20209487</pmid><doi>10.1002/jgm.1441</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-498X |
ispartof | The journal of gene medicine, 2010-04, Vol.12 (4), p.323-332 |
issn | 1099-498X 1521-2254 1521-2254 |
language | eng |
recordid | cdi_proquest_miscellaneous_883014868 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Amber Animals Antibiotic resistance Auxotrophy Biomarkers - metabolism biosafety Cell Line, Tumor DNA delivery DNA Primers - genetics Drug Resistance, Microbial - genetics Electroporation electrotransfer Escherichia coli Escherichia coli - enzymology Escherichia coli - genetics Expression vectors Female Gene therapy Gene transfer Genes, Suppressor Genetic Therapy - methods Genetic Vectors - genetics Genetic Vectors - metabolism Kanamycin Luciferases Mice Mice, Inbred BALB C Muscles Nonsense mutation nonviral Pharmaceuticals plasmid vector Plasmids Plasmids - genetics Plasmids - metabolism Skin ThyA protein Thymidine Thymidylate Synthase - genetics Transgenes |
title | pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pFARs,%20Plasmids%20free%20of%20antibiotic%20resistance%20markers,%20display%20high-level%20transgene%20expression%20in%20muscle,%20skin%20and%20tumour%20cells&rft.jtitle=The%20journal%20of%20gene%20medicine&rft.au=Marie,%20Corinne&rft.date=2010-04&rft.volume=12&rft.issue=4&rft.spage=323&rft.epage=332&rft.pages=323-332&rft.issn=1099-498X&rft.eissn=1521-2254&rft_id=info:doi/10.1002/jgm.1441&rft_dat=%3Cproquest_cross%3E3918820181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755942399&rft_id=info:pmid/20209487&rfr_iscdi=true |