Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold

A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2010-09, Vol.94A (3), p.937-944
Hauptverfasser: Honda, Michiyo, Fujimi, Takahiko J., Izumi, Shigeki, Izawa, Kouji, Aizawa, Mamoru, Morisue, Hikaru, Tsuchiya, Takahide, Kanzawa, Nobuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 944
container_issue 3
container_start_page 937
container_title Journal of biomedical materials research. Part A
container_volume 94A
creator Honda, Michiyo
Fujimi, Takahiko J.
Izumi, Shigeki
Izawa, Kouji
Aizawa, Mamoru
Morisue, Hikaru
Tsuchiya, Takahide
Kanzawa, Nobuyuki
description A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010
doi_str_mv 10.1002/jbm.a.32779
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883014659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883014659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqWwYo-yQSxQBj8SP5a0ogOoFIkWdWnd-AEuThzsjGAW_Hc8zbTsgJWvr79zrnxPVT3FaIURIq-u-2EFK0o4l_eqQ9x1pGkl6-7v6lY2lEh2UD3K-brADHXkYXVAEKdIUnRY_bqMU_ySYPrqNYQaRgjbbHMdXT2lGLyzCWYfx_JiauNdudtx9kuvQDHPNvYB8pxrP9aD1yk2N_AApZxiWsxgKpLZNs73NtVZg3MxmMfVAwch2yf786j6fPrm8uRtc_Zx_e7k9VmjW0ZkY51zTAjLeyeI0VyAwZLLzgIYEKa3SHLDcWs44YZpLIAhIyUBbYzQRtKj6sXiW_70fWPzrAaftQ0BRhs3WQlBEW5Z9x8kkx2XHKN_krwVkqOW7jxfLmRZSM7JOjUlP0DaKozULkJVIlSgbiIs9LO976YfrLljbzMrwPM9AGWPwSUYtc9_OIqpQGxnhBfuhw92-7eZ6v3xh9vhzaLxJdefdxpI3xTjlHfq6nytri6oOL84XatP9Dd3KsYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748970439</pqid></control><display><type>article</type><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</creator><creatorcontrib>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</creatorcontrib><description>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.32779</identifier><identifier>PMID: 20730930</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>3D culture ; Animals ; Biological and medical sciences ; Biotechnology ; Cell Culture Techniques - methods ; Cell Differentiation - physiology ; Cell Line ; Cell Proliferation ; Durapatite - chemistry ; Durapatite - metabolism ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hydroxyapatite ; Industrial applications and implications. Economical aspects ; Materials Testing ; Medical sciences ; Mice ; Miscellaneous ; Osteoblasts - cytology ; Osteoblasts - physiology ; osteogenesis ; Osteogenesis - physiology ; Porosity ; scaffold ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods</subject><ispartof>Journal of biomedical materials research. Part A, 2010-09, Vol.94A (3), p.937-944</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>(c) 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</citedby><cites>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.32779$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.32779$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23138069$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20730930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Fujimi, Takahiko J.</creatorcontrib><creatorcontrib>Izumi, Shigeki</creatorcontrib><creatorcontrib>Izawa, Kouji</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Morisue, Hikaru</creatorcontrib><creatorcontrib>Tsuchiya, Takahide</creatorcontrib><creatorcontrib>Kanzawa, Nobuyuki</creatorcontrib><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</description><subject>3D culture</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hydroxyapatite</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>Porosity</subject><subject>scaffold</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhSMEoqWwYo-yQSxQBj8SP5a0ogOoFIkWdWnd-AEuThzsjGAW_Hc8zbTsgJWvr79zrnxPVT3FaIURIq-u-2EFK0o4l_eqQ9x1pGkl6-7v6lY2lEh2UD3K-brADHXkYXVAEKdIUnRY_bqMU_ySYPrqNYQaRgjbbHMdXT2lGLyzCWYfx_JiauNdudtx9kuvQDHPNvYB8pxrP9aD1yk2N_AApZxiWsxgKpLZNs73NtVZg3MxmMfVAwch2yf786j6fPrm8uRtc_Zx_e7k9VmjW0ZkY51zTAjLeyeI0VyAwZLLzgIYEKa3SHLDcWs44YZpLIAhIyUBbYzQRtKj6sXiW_70fWPzrAaftQ0BRhs3WQlBEW5Z9x8kkx2XHKN_krwVkqOW7jxfLmRZSM7JOjUlP0DaKozULkJVIlSgbiIs9LO976YfrLljbzMrwPM9AGWPwSUYtc9_OIqpQGxnhBfuhw92-7eZ6v3xh9vhzaLxJdefdxpI3xTjlHfq6nytri6oOL84XatP9Dd3KsYD</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Honda, Michiyo</creator><creator>Fujimi, Takahiko J.</creator><creator>Izumi, Shigeki</creator><creator>Izawa, Kouji</creator><creator>Aizawa, Mamoru</creator><creator>Morisue, Hikaru</creator><creator>Tsuchiya, Takahide</creator><creator>Kanzawa, Nobuyuki</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope></search><sort><creationdate>20100901</creationdate><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><author>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D culture</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hydroxyapatite</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>Porosity</topic><topic>scaffold</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Fujimi, Takahiko J.</creatorcontrib><creatorcontrib>Izumi, Shigeki</creatorcontrib><creatorcontrib>Izawa, Kouji</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Morisue, Hikaru</creatorcontrib><creatorcontrib>Tsuchiya, Takahide</creatorcontrib><creatorcontrib>Kanzawa, Nobuyuki</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Michiyo</au><au>Fujimi, Takahiko J.</au><au>Izumi, Shigeki</au><au>Izawa, Kouji</au><au>Aizawa, Mamoru</au><au>Morisue, Hikaru</au><au>Tsuchiya, Takahide</au><au>Kanzawa, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>94A</volume><issue>3</issue><spage>937</spage><epage>944</epage><pages>937-944</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20730930</pmid><doi>10.1002/jbm.a.32779</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2010-09, Vol.94A (3), p.937-944
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_883014659
source MEDLINE; Access via Wiley Online Library
subjects 3D culture
Animals
Biological and medical sciences
Biotechnology
Cell Culture Techniques - methods
Cell Differentiation - physiology
Cell Line
Cell Proliferation
Durapatite - chemistry
Durapatite - metabolism
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
hydroxyapatite
Industrial applications and implications. Economical aspects
Materials Testing
Medical sciences
Mice
Miscellaneous
Osteoblasts - cytology
Osteoblasts - physiology
osteogenesis
Osteogenesis - physiology
Porosity
scaffold
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Tissue Engineering - methods
title Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographical%20analyses%20of%20proliferation%20and%20differentiation%20of%20osteoblasts%20in%20micro-%20and%20macropores%20of%20apatite-fiber%20scaffold&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Honda,%20Michiyo&rft.date=2010-09-01&rft.volume=94A&rft.issue=3&rft.spage=937&rft.epage=944&rft.pages=937-944&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.32779&rft_dat=%3Cproquest_cross%3E883014659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748970439&rft_id=info:pmid/20730930&rfr_iscdi=true