Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold
A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with tw...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2010-09, Vol.94A (3), p.937-944 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 944 |
---|---|
container_issue | 3 |
container_start_page | 937 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 94A |
creator | Honda, Michiyo Fujimi, Takahiko J. Izumi, Shigeki Izawa, Kouji Aizawa, Mamoru Morisue, Hikaru Tsuchiya, Takahide Kanzawa, Nobuyuki |
description | A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010 |
doi_str_mv | 10.1002/jbm.a.32779 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883014659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883014659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqWwYo-yQSxQBj8SP5a0ogOoFIkWdWnd-AEuThzsjGAW_Hc8zbTsgJWvr79zrnxPVT3FaIURIq-u-2EFK0o4l_eqQ9x1pGkl6-7v6lY2lEh2UD3K-brADHXkYXVAEKdIUnRY_bqMU_ySYPrqNYQaRgjbbHMdXT2lGLyzCWYfx_JiauNdudtx9kuvQDHPNvYB8pxrP9aD1yk2N_AApZxiWsxgKpLZNs73NtVZg3MxmMfVAwch2yf786j6fPrm8uRtc_Zx_e7k9VmjW0ZkY51zTAjLeyeI0VyAwZLLzgIYEKa3SHLDcWs44YZpLIAhIyUBbYzQRtKj6sXiW_70fWPzrAaftQ0BRhs3WQlBEW5Z9x8kkx2XHKN_krwVkqOW7jxfLmRZSM7JOjUlP0DaKozULkJVIlSgbiIs9LO976YfrLljbzMrwPM9AGWPwSUYtc9_OIqpQGxnhBfuhw92-7eZ6v3xh9vhzaLxJdefdxpI3xTjlHfq6nytri6oOL84XatP9Dd3KsYD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748970439</pqid></control><display><type>article</type><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</creator><creatorcontrib>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</creatorcontrib><description>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.32779</identifier><identifier>PMID: 20730930</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>3D culture ; Animals ; Biological and medical sciences ; Biotechnology ; Cell Culture Techniques - methods ; Cell Differentiation - physiology ; Cell Line ; Cell Proliferation ; Durapatite - chemistry ; Durapatite - metabolism ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; hydroxyapatite ; Industrial applications and implications. Economical aspects ; Materials Testing ; Medical sciences ; Mice ; Miscellaneous ; Osteoblasts - cytology ; Osteoblasts - physiology ; osteogenesis ; Osteogenesis - physiology ; Porosity ; scaffold ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Tissue Engineering - methods</subject><ispartof>Journal of biomedical materials research. Part A, 2010-09, Vol.94A (3), p.937-944</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>(c) 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</citedby><cites>FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.32779$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.32779$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23138069$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20730930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Fujimi, Takahiko J.</creatorcontrib><creatorcontrib>Izumi, Shigeki</creatorcontrib><creatorcontrib>Izawa, Kouji</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Morisue, Hikaru</creatorcontrib><creatorcontrib>Tsuchiya, Takahide</creatorcontrib><creatorcontrib>Kanzawa, Nobuyuki</creatorcontrib><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</description><subject>3D culture</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Durapatite - chemistry</subject><subject>Durapatite - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>hydroxyapatite</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - physiology</subject><subject>osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>Porosity</subject><subject>scaffold</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Tissue Engineering - methods</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhSMEoqWwYo-yQSxQBj8SP5a0ogOoFIkWdWnd-AEuThzsjGAW_Hc8zbTsgJWvr79zrnxPVT3FaIURIq-u-2EFK0o4l_eqQ9x1pGkl6-7v6lY2lEh2UD3K-brADHXkYXVAEKdIUnRY_bqMU_ySYPrqNYQaRgjbbHMdXT2lGLyzCWYfx_JiauNdudtx9kuvQDHPNvYB8pxrP9aD1yk2N_AApZxiWsxgKpLZNs73NtVZg3MxmMfVAwch2yf786j6fPrm8uRtc_Zx_e7k9VmjW0ZkY51zTAjLeyeI0VyAwZLLzgIYEKa3SHLDcWs44YZpLIAhIyUBbYzQRtKj6sXiW_70fWPzrAaftQ0BRhs3WQlBEW5Z9x8kkx2XHKN_krwVkqOW7jxfLmRZSM7JOjUlP0DaKozULkJVIlSgbiIs9LO976YfrLljbzMrwPM9AGWPwSUYtc9_OIqpQGxnhBfuhw92-7eZ6v3xh9vhzaLxJdefdxpI3xTjlHfq6nytri6oOL84XatP9Dd3KsYD</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Honda, Michiyo</creator><creator>Fujimi, Takahiko J.</creator><creator>Izumi, Shigeki</creator><creator>Izawa, Kouji</creator><creator>Aizawa, Mamoru</creator><creator>Morisue, Hikaru</creator><creator>Tsuchiya, Takahide</creator><creator>Kanzawa, Nobuyuki</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7QP</scope></search><sort><creationdate>20100901</creationdate><title>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</title><author>Honda, Michiyo ; Fujimi, Takahiko J. ; Izumi, Shigeki ; Izawa, Kouji ; Aizawa, Mamoru ; Morisue, Hikaru ; Tsuchiya, Takahide ; Kanzawa, Nobuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-efff688e7bf82dc78ad19795eaada8dbe097d714d727d6c18a60d992acdd8cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D culture</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Durapatite - chemistry</topic><topic>Durapatite - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>hydroxyapatite</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - physiology</topic><topic>osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>Porosity</topic><topic>scaffold</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Honda, Michiyo</creatorcontrib><creatorcontrib>Fujimi, Takahiko J.</creatorcontrib><creatorcontrib>Izumi, Shigeki</creatorcontrib><creatorcontrib>Izawa, Kouji</creatorcontrib><creatorcontrib>Aizawa, Mamoru</creatorcontrib><creatorcontrib>Morisue, Hikaru</creatorcontrib><creatorcontrib>Tsuchiya, Takahide</creatorcontrib><creatorcontrib>Kanzawa, Nobuyuki</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Honda, Michiyo</au><au>Fujimi, Takahiko J.</au><au>Izumi, Shigeki</au><au>Izawa, Kouji</au><au>Aizawa, Mamoru</au><au>Morisue, Hikaru</au><au>Tsuchiya, Takahide</au><au>Kanzawa, Nobuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>94A</volume><issue>3</issue><spage>937</spage><epage>944</epage><pages>937-944</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>A variety of calcium phosphates have been used for bone tissue‐engineering applications. We developed porous hydroxyapatite (HAp) ceramics by firing green compacts consisting of spherical carbon beads and HAp fiber. The apatite‐fiber scaffold (AFS) forms a three‐dimensional network of fibers with two different pore sizes (micro‐ and macropores). In this study, we investigated cell distribution and fine cell structure in AFS by confocal laser scanning microscopy. Osteoblastic cells were permeated homogenously throughout the scaffold under static culture conditions and grew three‐dimensionally in macropores of AFS. Cells penetrated into micropores when they were capable of cell–cell formations. Cell proliferation and differentiation were also evaluated by biochemical and molecular biological approaches. The expression levels of early‐phase osteogenic genes in AFS increased immediately, and those of middle‐phase genes were maintained during the 2‐week study period. Furthermore, the expression of late‐phase markers increased gradually during the incubation period. These data indicate that macropores provide sufficient space for cell growth and proliferation and that micropores facilitate cell differentiation via cell–cell networks. This study provides evidence for the effectiveness of three‐dimensional culture systems comprising AFS, which mimics the microenvironment of bone cells. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20730930</pmid><doi>10.1002/jbm.a.32779</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2010-09, Vol.94A (3), p.937-944 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_883014659 |
source | MEDLINE; Access via Wiley Online Library |
subjects | 3D culture Animals Biological and medical sciences Biotechnology Cell Culture Techniques - methods Cell Differentiation - physiology Cell Line Cell Proliferation Durapatite - chemistry Durapatite - metabolism Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry hydroxyapatite Industrial applications and implications. Economical aspects Materials Testing Medical sciences Mice Miscellaneous Osteoblasts - cytology Osteoblasts - physiology osteogenesis Osteogenesis - physiology Porosity scaffold Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Technology. Biomaterials. Equipments Tissue Engineering - methods |
title | Topographical analyses of proliferation and differentiation of osteoblasts in micro- and macropores of apatite-fiber scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographical%20analyses%20of%20proliferation%20and%20differentiation%20of%20osteoblasts%20in%20micro-%20and%20macropores%20of%20apatite-fiber%20scaffold&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Honda,%20Michiyo&rft.date=2010-09-01&rft.volume=94A&rft.issue=3&rft.spage=937&rft.epage=944&rft.pages=937-944&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.32779&rft_dat=%3Cproquest_cross%3E883014659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748970439&rft_id=info:pmid/20730930&rfr_iscdi=true |