Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite

Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2010-06, Vol.93A (3), p.1056-1067
Hauptverfasser: Pelto, Jani, Haimi, Suvi, Puukilainen, Esa, Whitten, Philip G., Spinks, Geoffrey M., Bahrami-Samani, Mehrdad, Ritala, Mikko, Vuorinen, Tommi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 3
container_start_page 1056
container_title Journal of biomedical materials research. Part A
container_volume 93A
creator Pelto, Jani
Haimi, Suvi
Puukilainen, Esa
Whitten, Philip G.
Spinks, Geoffrey M.
Bahrami-Samani, Mehrdad
Ritala, Mikko
Vuorinen, Tommi
description Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010
doi_str_mv 10.1002/jbm.a.32603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883013986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733646112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBeAIgWgprNijbBBIKINf149lW5WWqi1CgOjOchxHeHDiYCeU_PtmmKHs2pUt67vnWjpF8RKjFUaIvF_X3cqsKOGIPir2MQCpmOLweHNnqqJE8b3iWc7rBXME5Gmxh5UAygnbL9YnwdkxRWNH_9uPc2n6pqx9tLEbzOhrHzaPsS2HGOZhTikGV_2YTZhS7L0tjfVN2U1h9NWNCcE1pTWpjn3Zmz6OU-3KTVLMfnTPiyetCdm92J0HxbcPJ1-Pz6qLT6cfjw8vKssI0MqilhIJhEtVt1iapgbKsGAUADeMCUsxEVIhcJyB5JZTgkAhrqjlgnCgB8Wbbe6Q4q_J5VF3PlsXguldnLKWkiJMleQPS65A0uUjD0pBKWccY7LIt_dKzAUmIDiSC323pTbFnJNr9ZB8Z9KsMdKbavVSrTb6b7WLfrULnurONf_trssFvN4Bk60JbTK99fnOESIEQoAWh7fuxgc337dTnx9d_ltebWd8Ht2fuxmTfmouqAD9_epUo6Pza_hy_VljegsqIMmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671257608</pqid></control><display><type>article</type><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</creator><creatorcontrib>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</creatorcontrib><description>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.32603</identifier><identifier>PMID: 19753624</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adipose Tissue - cytology ; atomic force microscopy ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; Cell Adhesion - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Crystallization ; electroactive polymer ; Electroactivity ; Electrochemistry - methods ; Electrolytic cells ; Humans ; Hyaluronic Acid - analogs &amp; derivatives ; Hyaluronic Acid - chemistry ; Hyaluronic Acid - pharmacology ; Materials Testing - methods ; Medical sciences ; Microorganisms ; Microscopy, Atomic Force ; Middle Aged ; Oxidation-Reduction - drug effects ; polypyrrole composite ; Polypyrroles ; Pyrroles - chemistry ; Pyrroles - pharmacology ; Quartz ; quartz crystal microbalance ; Reduction ; Spectrum Analysis, Raman ; Stem Cells - cytology ; Stem Cells - drug effects ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Titanium</subject><ispartof>Journal of biomedical materials research. Part A, 2010-06, Vol.93A (3), p.1056-1067</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</citedby><cites>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.32603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.32603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22770050$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19753624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><creatorcontrib>Puukilainen, Esa</creatorcontrib><creatorcontrib>Whitten, Philip G.</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Bahrami-Samani, Mehrdad</creatorcontrib><creatorcontrib>Ritala, Mikko</creatorcontrib><creatorcontrib>Vuorinen, Tommi</creatorcontrib><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</description><subject>Adipose Tissue - cytology</subject><subject>atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Crystallization</subject><subject>electroactive polymer</subject><subject>Electroactivity</subject><subject>Electrochemistry - methods</subject><subject>Electrolytic cells</subject><subject>Humans</subject><subject>Hyaluronic Acid - analogs &amp; derivatives</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hyaluronic Acid - pharmacology</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Microorganisms</subject><subject>Microscopy, Atomic Force</subject><subject>Middle Aged</subject><subject>Oxidation-Reduction - drug effects</subject><subject>polypyrrole composite</subject><subject>Polypyrroles</subject><subject>Pyrroles - chemistry</subject><subject>Pyrroles - pharmacology</subject><subject>Quartz</subject><subject>quartz crystal microbalance</subject><subject>Reduction</subject><subject>Spectrum Analysis, Raman</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Titanium</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAUBeAIgWgprNijbBBIKINf149lW5WWqi1CgOjOchxHeHDiYCeU_PtmmKHs2pUt67vnWjpF8RKjFUaIvF_X3cqsKOGIPir2MQCpmOLweHNnqqJE8b3iWc7rBXME5Gmxh5UAygnbL9YnwdkxRWNH_9uPc2n6pqx9tLEbzOhrHzaPsS2HGOZhTikGV_2YTZhS7L0tjfVN2U1h9NWNCcE1pTWpjn3Zmz6OU-3KTVLMfnTPiyetCdm92J0HxbcPJ1-Pz6qLT6cfjw8vKssI0MqilhIJhEtVt1iapgbKsGAUADeMCUsxEVIhcJyB5JZTgkAhrqjlgnCgB8Wbbe6Q4q_J5VF3PlsXguldnLKWkiJMleQPS65A0uUjD0pBKWccY7LIt_dKzAUmIDiSC323pTbFnJNr9ZB8Z9KsMdKbavVSrTb6b7WLfrULnurONf_trssFvN4Bk60JbTK99fnOESIEQoAWh7fuxgc337dTnx9d_ltebWd8Ht2fuxmTfmouqAD9_epUo6Pza_hy_VljegsqIMmU</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Pelto, Jani</creator><creator>Haimi, Suvi</creator><creator>Puukilainen, Esa</creator><creator>Whitten, Philip G.</creator><creator>Spinks, Geoffrey M.</creator><creator>Bahrami-Samani, Mehrdad</creator><creator>Ritala, Mikko</creator><creator>Vuorinen, Tommi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><author>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adipose Tissue - cytology</topic><topic>atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Crystallization</topic><topic>electroactive polymer</topic><topic>Electroactivity</topic><topic>Electrochemistry - methods</topic><topic>Electrolytic cells</topic><topic>Humans</topic><topic>Hyaluronic Acid - analogs &amp; derivatives</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hyaluronic Acid - pharmacology</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Microorganisms</topic><topic>Microscopy, Atomic Force</topic><topic>Middle Aged</topic><topic>Oxidation-Reduction - drug effects</topic><topic>polypyrrole composite</topic><topic>Polypyrroles</topic><topic>Pyrroles - chemistry</topic><topic>Pyrroles - pharmacology</topic><topic>Quartz</topic><topic>quartz crystal microbalance</topic><topic>Reduction</topic><topic>Spectrum Analysis, Raman</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><creatorcontrib>Puukilainen, Esa</creatorcontrib><creatorcontrib>Whitten, Philip G.</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Bahrami-Samani, Mehrdad</creatorcontrib><creatorcontrib>Ritala, Mikko</creatorcontrib><creatorcontrib>Vuorinen, Tommi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelto, Jani</au><au>Haimi, Suvi</au><au>Puukilainen, Esa</au><au>Whitten, Philip G.</au><au>Spinks, Geoffrey M.</au><au>Bahrami-Samani, Mehrdad</au><au>Ritala, Mikko</au><au>Vuorinen, Tommi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>93A</volume><issue>3</issue><spage>1056</spage><epage>1067</epage><pages>1056-1067</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19753624</pmid><doi>10.1002/jbm.a.32603</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2010-06, Vol.93A (3), p.1056-1067
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_883013986
source MEDLINE; Access via Wiley Online Library
subjects Adipose Tissue - cytology
atomic force microscopy
Biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Biological and medical sciences
Cell Adhesion - drug effects
Cell Proliferation - drug effects
Cell Survival - drug effects
Cells, Cultured
Crystallization
electroactive polymer
Electroactivity
Electrochemistry - methods
Electrolytic cells
Humans
Hyaluronic Acid - analogs & derivatives
Hyaluronic Acid - chemistry
Hyaluronic Acid - pharmacology
Materials Testing - methods
Medical sciences
Microorganisms
Microscopy, Atomic Force
Middle Aged
Oxidation-Reduction - drug effects
polypyrrole composite
Polypyrroles
Pyrroles - chemistry
Pyrroles - pharmacology
Quartz
quartz crystal microbalance
Reduction
Spectrum Analysis, Raman
Stem Cells - cytology
Stem Cells - drug effects
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
Titanium
title Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroactivity%20and%20biocompatibility%20of%20polypyrrole-hyaluronic%20acid%20multi-walled%20carbon%20nanotube%20composite&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Pelto,%20Jani&rft.date=2010-06-01&rft.volume=93A&rft.issue=3&rft.spage=1056&rft.epage=1067&rft.pages=1056-1067&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.32603&rft_dat=%3Cproquest_cross%3E733646112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671257608&rft_id=info:pmid/19753624&rfr_iscdi=true