Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite
Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM)...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2010-06, Vol.93A (3), p.1056-1067 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1067 |
---|---|
container_issue | 3 |
container_start_page | 1056 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 93A |
creator | Pelto, Jani Haimi, Suvi Puukilainen, Esa Whitten, Philip G. Spinks, Geoffrey M. Bahrami-Samani, Mehrdad Ritala, Mikko Vuorinen, Tommi |
description | Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010 |
doi_str_mv | 10.1002/jbm.a.32603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883013986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733646112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</originalsourceid><addsrcrecordid>eNqF0Utv1DAUBeAIgWgprNijbBBIKINf149lW5WWqi1CgOjOchxHeHDiYCeU_PtmmKHs2pUt67vnWjpF8RKjFUaIvF_X3cqsKOGIPir2MQCpmOLweHNnqqJE8b3iWc7rBXME5Gmxh5UAygnbL9YnwdkxRWNH_9uPc2n6pqx9tLEbzOhrHzaPsS2HGOZhTikGV_2YTZhS7L0tjfVN2U1h9NWNCcE1pTWpjn3Zmz6OU-3KTVLMfnTPiyetCdm92J0HxbcPJ1-Pz6qLT6cfjw8vKssI0MqilhIJhEtVt1iapgbKsGAUADeMCUsxEVIhcJyB5JZTgkAhrqjlgnCgB8Wbbe6Q4q_J5VF3PlsXguldnLKWkiJMleQPS65A0uUjD0pBKWccY7LIt_dKzAUmIDiSC323pTbFnJNr9ZB8Z9KsMdKbavVSrTb6b7WLfrULnurONf_trssFvN4Bk60JbTK99fnOESIEQoAWh7fuxgc337dTnx9d_ltebWd8Ht2fuxmTfmouqAD9_epUo6Pza_hy_VljegsqIMmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671257608</pqid></control><display><type>article</type><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</creator><creatorcontrib>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</creatorcontrib><description>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.32603</identifier><identifier>PMID: 19753624</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adipose Tissue - cytology ; atomic force microscopy ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; Cell Adhesion - drug effects ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Crystallization ; electroactive polymer ; Electroactivity ; Electrochemistry - methods ; Electrolytic cells ; Humans ; Hyaluronic Acid - analogs & derivatives ; Hyaluronic Acid - chemistry ; Hyaluronic Acid - pharmacology ; Materials Testing - methods ; Medical sciences ; Microorganisms ; Microscopy, Atomic Force ; Middle Aged ; Oxidation-Reduction - drug effects ; polypyrrole composite ; Polypyrroles ; Pyrroles - chemistry ; Pyrroles - pharmacology ; Quartz ; quartz crystal microbalance ; Reduction ; Spectrum Analysis, Raman ; Stem Cells - cytology ; Stem Cells - drug effects ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; Titanium</subject><ispartof>Journal of biomedical materials research. Part A, 2010-06, Vol.93A (3), p.1056-1067</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</citedby><cites>FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.32603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.32603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22770050$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19753624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><creatorcontrib>Puukilainen, Esa</creatorcontrib><creatorcontrib>Whitten, Philip G.</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Bahrami-Samani, Mehrdad</creatorcontrib><creatorcontrib>Ritala, Mikko</creatorcontrib><creatorcontrib>Vuorinen, Tommi</creatorcontrib><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</description><subject>Adipose Tissue - cytology</subject><subject>atomic force microscopy</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Crystallization</subject><subject>electroactive polymer</subject><subject>Electroactivity</subject><subject>Electrochemistry - methods</subject><subject>Electrolytic cells</subject><subject>Humans</subject><subject>Hyaluronic Acid - analogs & derivatives</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hyaluronic Acid - pharmacology</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Microorganisms</subject><subject>Microscopy, Atomic Force</subject><subject>Middle Aged</subject><subject>Oxidation-Reduction - drug effects</subject><subject>polypyrrole composite</subject><subject>Polypyrroles</subject><subject>Pyrroles - chemistry</subject><subject>Pyrroles - pharmacology</subject><subject>Quartz</subject><subject>quartz crystal microbalance</subject><subject>Reduction</subject><subject>Spectrum Analysis, Raman</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - drug effects</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Titanium</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAUBeAIgWgprNijbBBIKINf149lW5WWqi1CgOjOchxHeHDiYCeU_PtmmKHs2pUt67vnWjpF8RKjFUaIvF_X3cqsKOGIPir2MQCpmOLweHNnqqJE8b3iWc7rBXME5Gmxh5UAygnbL9YnwdkxRWNH_9uPc2n6pqx9tLEbzOhrHzaPsS2HGOZhTikGV_2YTZhS7L0tjfVN2U1h9NWNCcE1pTWpjn3Zmz6OU-3KTVLMfnTPiyetCdm92J0HxbcPJ1-Pz6qLT6cfjw8vKssI0MqilhIJhEtVt1iapgbKsGAUADeMCUsxEVIhcJyB5JZTgkAhrqjlgnCgB8Wbbe6Q4q_J5VF3PlsXguldnLKWkiJMleQPS65A0uUjD0pBKWccY7LIt_dKzAUmIDiSC323pTbFnJNr9ZB8Z9KsMdKbavVSrTb6b7WLfrULnurONf_trssFvN4Bk60JbTK99fnOESIEQoAWh7fuxgc337dTnx9d_ltebWd8Ht2fuxmTfmouqAD9_epUo6Pza_hy_VljegsqIMmU</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Pelto, Jani</creator><creator>Haimi, Suvi</creator><creator>Puukilainen, Esa</creator><creator>Whitten, Philip G.</creator><creator>Spinks, Geoffrey M.</creator><creator>Bahrami-Samani, Mehrdad</creator><creator>Ritala, Mikko</creator><creator>Vuorinen, Tommi</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</title><author>Pelto, Jani ; Haimi, Suvi ; Puukilainen, Esa ; Whitten, Philip G. ; Spinks, Geoffrey M. ; Bahrami-Samani, Mehrdad ; Ritala, Mikko ; Vuorinen, Tommi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4253-c0f32852689bf18adb5341743551d447c31278905e64586c6320590693c672653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adipose Tissue - cytology</topic><topic>atomic force microscopy</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Crystallization</topic><topic>electroactive polymer</topic><topic>Electroactivity</topic><topic>Electrochemistry - methods</topic><topic>Electrolytic cells</topic><topic>Humans</topic><topic>Hyaluronic Acid - analogs & derivatives</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hyaluronic Acid - pharmacology</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Microorganisms</topic><topic>Microscopy, Atomic Force</topic><topic>Middle Aged</topic><topic>Oxidation-Reduction - drug effects</topic><topic>polypyrrole composite</topic><topic>Polypyrroles</topic><topic>Pyrroles - chemistry</topic><topic>Pyrroles - pharmacology</topic><topic>Quartz</topic><topic>quartz crystal microbalance</topic><topic>Reduction</topic><topic>Spectrum Analysis, Raman</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - drug effects</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelto, Jani</creatorcontrib><creatorcontrib>Haimi, Suvi</creatorcontrib><creatorcontrib>Puukilainen, Esa</creatorcontrib><creatorcontrib>Whitten, Philip G.</creatorcontrib><creatorcontrib>Spinks, Geoffrey M.</creatorcontrib><creatorcontrib>Bahrami-Samani, Mehrdad</creatorcontrib><creatorcontrib>Ritala, Mikko</creatorcontrib><creatorcontrib>Vuorinen, Tommi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelto, Jani</au><au>Haimi, Suvi</au><au>Puukilainen, Esa</au><au>Whitten, Philip G.</au><au>Spinks, Geoffrey M.</au><au>Bahrami-Samani, Mehrdad</au><au>Ritala, Mikko</au><au>Vuorinen, Tommi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>93A</volume><issue>3</issue><spage>1056</spage><epage>1067</epage><pages>1056-1067</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Electroactivity of polypyrrole hyaluronic acid, electropolymerized in the presence of oxidized carbon nanotubes (PPyHA‐CNT) was studied in situ by electrochemical atomic force microscopy (EC‐AFM) in physiological electrolyte solution. In situ Raman spectroscopic and quartz crystal microbalance (QCM) studies were conducted on layers of the polymer grown on AT‐cut 5 MHz quartz crystals. Human adipose stem cell (ASC) attachment and viability were studied by Live/Dead staining, and the proliferation was evaluated by WST‐1 Cell proliferation assay for polypyrrole samples electropolymerized on titanium. According to cyclic voltammetry, the measured specific capacitance of the material on gold is roughly 20% of the reference polypyrrole dodecylbenzene sulfonate (PPyDBS). Electrochemical‐QCM (EC‐QCM) analysis of a 210‐nm thick film reveals that the material is very soft G′∼100 kPa and swells upon reduction. EC‐AFM of samples polymerized on microelectrodes show that there are areas of varying electroactivity, especially for samples without a hydrophopic backing PPyDBS layer. AFM line scans show typically 20–25% thickness change during electrochemical reduction. Raman spectroscopic analysis suggests that the material supports noticeable polaron conduction. Biocompatibility study of the PPyHA‐CNT on titanium with adipose stem cells showed equal or better cell attachment, viability, and proliferation compared with the reference polylactide. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19753624</pmid><doi>10.1002/jbm.a.32603</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2010-06, Vol.93A (3), p.1056-1067 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_883013986 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adipose Tissue - cytology atomic force microscopy Biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Biological and medical sciences Cell Adhesion - drug effects Cell Proliferation - drug effects Cell Survival - drug effects Cells, Cultured Crystallization electroactive polymer Electroactivity Electrochemistry - methods Electrolytic cells Humans Hyaluronic Acid - analogs & derivatives Hyaluronic Acid - chemistry Hyaluronic Acid - pharmacology Materials Testing - methods Medical sciences Microorganisms Microscopy, Atomic Force Middle Aged Oxidation-Reduction - drug effects polypyrrole composite Polypyrroles Pyrroles - chemistry Pyrroles - pharmacology Quartz quartz crystal microbalance Reduction Spectrum Analysis, Raman Stem Cells - cytology Stem Cells - drug effects Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Surgical implants Technology. Biomaterials. Equipments Titanium |
title | Electroactivity and biocompatibility of polypyrrole-hyaluronic acid multi-walled carbon nanotube composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroactivity%20and%20biocompatibility%20of%20polypyrrole-hyaluronic%20acid%20multi-walled%20carbon%20nanotube%20composite&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Pelto,%20Jani&rft.date=2010-06-01&rft.volume=93A&rft.issue=3&rft.spage=1056&rft.epage=1067&rft.pages=1056-1067&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.32603&rft_dat=%3Cproquest_cross%3E733646112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671257608&rft_id=info:pmid/19753624&rfr_iscdi=true |