Design and characterization of PEGylated terpolymer biomaterials

A terpolymer copolymerized from hexyl methacrylate, methyl methacrylate, and poly(ethylene glycol) methacrylate (PEGMA) was synthesized. Polymers containing 0–25 mol % PEGMA were studied. As the mole fraction of PEGMA in the polymer chains increased, the material becomes more hydrophilic as observed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2010-09, Vol.94A (4), p.1294-1302
Hauptverfasser: Heath, Daniel E., Cooper, Stuart L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1302
container_issue 4
container_start_page 1294
container_title Journal of biomedical materials research. Part A
container_volume 94A
creator Heath, Daniel E.
Cooper, Stuart L.
description A terpolymer copolymerized from hexyl methacrylate, methyl methacrylate, and poly(ethylene glycol) methacrylate (PEGMA) was synthesized. Polymers containing 0–25 mol % PEGMA were studied. As the mole fraction of PEGMA in the polymer chains increased, the material becomes more hydrophilic as observed by a decrease in the contact angle of water (81°–68°) and an increase in the equilibrium water absorption (0.7–237 wt %). Furthermore, the material shows nonfouling interfacial properties through resistance to protein adsorption and cellular attachment. A total of 1.2 μg/cm2 fibrinogen, 18,000 HUVECs/cm2, and 3,000,000 platelets/cm2 adsorbed or adhered on non‐PEGylated materials, whereas very low amounts of protein or cells were observed on materials containing ≥15 mol % PEGMA. Being thermoplastic, the polymer can be processed postsynthesis. To illustrate the processing capabilities of the material, polymer solutions were electrospun into nonwoven fibrous scaffold, which also retained their nonfouling character. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.
doi_str_mv 10.1002/jbm.a.32811
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883013857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671257022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-e999371c98dec83b2805633bc792821bf17070f6059e88528ef2f3151a46761e3</originalsourceid><addsrcrecordid>eNqF0ctvEzEQB2ALgegDTtyrvSAqVRs89vp1gz4SQOVx4HG0vM5s63Yfwd6oDX89DknLrT2NZX0zY_lHyCugE6CUvb2qu4mbcKYBnpBdEIKVlZHi6fpcmZIzI3fIXkpXGUsq2HOyw6g0lTFql7w7xRQu-sL188Jfuuj8iDH8cWMY-mJoim9ns1XrRpwX-X4xtKsOY1GHoXNr59r0gjxrcsGX27pPfkzPvp98KM-_zj6evD8vfWUElGiM4Qq80XP0mtdMUyE5r70yTDOoG1BU0Sa_z6DWgmlsWMNBgKukkoB8n7zZzF3E4fcS02i7kDy2retxWCarNafAtVCPS2mE0gLoo1JV2uQvZCLLwwclSAVMKMpYpkcb6uOQUsTGLmLoXFxZoHYdmM2BWWf_BZb1wXbwsu5wfm_vEsrg9Ra45F3bRNf7kP47DrJiXGYHG3cTWlw9tNN-Ov58t7zc9IQ04u19j4vXViquhP31ZWan8qdkFT22U_4XSkO5Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671257022</pqid></control><display><type>article</type><title>Design and characterization of PEGylated terpolymer biomaterials</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heath, Daniel E. ; Cooper, Stuart L.</creator><creatorcontrib>Heath, Daniel E. ; Cooper, Stuart L.</creatorcontrib><description>A terpolymer copolymerized from hexyl methacrylate, methyl methacrylate, and poly(ethylene glycol) methacrylate (PEGMA) was synthesized. Polymers containing 0–25 mol % PEGMA were studied. As the mole fraction of PEGMA in the polymer chains increased, the material becomes more hydrophilic as observed by a decrease in the contact angle of water (81°–68°) and an increase in the equilibrium water absorption (0.7–237 wt %). Furthermore, the material shows nonfouling interfacial properties through resistance to protein adsorption and cellular attachment. A total of 1.2 μg/cm2 fibrinogen, 18,000 HUVECs/cm2, and 3,000,000 platelets/cm2 adsorbed or adhered on non‐PEGylated materials, whereas very low amounts of protein or cells were observed on materials containing ≥15 mol % PEGMA. Being thermoplastic, the polymer can be processed postsynthesis. To illustrate the processing capabilities of the material, polymer solutions were electrospun into nonwoven fibrous scaffold, which also retained their nonfouling character. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.32811</identifier><identifier>PMID: 20694997</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adsorption - drug effects ; Adult ; Applied sciences ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; Biological properties ; Biomedical materials ; blood compatible ; Blood Platelets - drug effects ; Blood Platelets - ultrastructure ; Cell Adhesion - drug effects ; Cell Proliferation - drug effects ; Cellular ; Contact angle ; Electrospinning ; Endothelial Cells - cytology ; Endothelial Cells - drug effects ; Exact sciences and technology ; Fibrinogen - metabolism ; Humans ; Magnetic Resonance Spectroscopy ; Male ; Medical sciences ; Methacrylates - chemical synthesis ; Methacrylates - chemistry ; Methacrylates - pharmacology ; Methylmethacrylate - chemical synthesis ; Methylmethacrylate - chemistry ; Methylmethacrylate - pharmacology ; Microscopy, Fluorescence ; Molecular Weight ; nonfouling ; Organic polymers ; Physicochemistry of polymers ; Platelet Adhesiveness - drug effects ; poly(ethylene glycol) ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - pharmacology ; Polymethyl methacrylates ; Properties and characterization ; Reproduction ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Surgical implants ; Technology. Biomaterials. Equipments ; terpolymer ; Terpolymers ; Umbilical Veins - cytology ; Water - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2010-09, Vol.94A (4), p.1294-1302</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><rights>(c) 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-e999371c98dec83b2805633bc792821bf17070f6059e88528ef2f3151a46761e3</citedby><cites>FETCH-LOGICAL-c4951-e999371c98dec83b2805633bc792821bf17070f6059e88528ef2f3151a46761e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.32811$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.32811$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23164236$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20694997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heath, Daniel E.</creatorcontrib><creatorcontrib>Cooper, Stuart L.</creatorcontrib><title>Design and characterization of PEGylated terpolymer biomaterials</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>A terpolymer copolymerized from hexyl methacrylate, methyl methacrylate, and poly(ethylene glycol) methacrylate (PEGMA) was synthesized. Polymers containing 0–25 mol % PEGMA were studied. As the mole fraction of PEGMA in the polymer chains increased, the material becomes more hydrophilic as observed by a decrease in the contact angle of water (81°–68°) and an increase in the equilibrium water absorption (0.7–237 wt %). Furthermore, the material shows nonfouling interfacial properties through resistance to protein adsorption and cellular attachment. A total of 1.2 μg/cm2 fibrinogen, 18,000 HUVECs/cm2, and 3,000,000 platelets/cm2 adsorbed or adhered on non‐PEGylated materials, whereas very low amounts of protein or cells were observed on materials containing ≥15 mol % PEGMA. Being thermoplastic, the polymer can be processed postsynthesis. To illustrate the processing capabilities of the material, polymer solutions were electrospun into nonwoven fibrous scaffold, which also retained their nonfouling character. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.</description><subject>Adsorption - drug effects</subject><subject>Adult</subject><subject>Applied sciences</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>blood compatible</subject><subject>Blood Platelets - drug effects</subject><subject>Blood Platelets - ultrastructure</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>Cellular</subject><subject>Contact angle</subject><subject>Electrospinning</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - drug effects</subject><subject>Exact sciences and technology</subject><subject>Fibrinogen - metabolism</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Methacrylates - chemical synthesis</subject><subject>Methacrylates - chemistry</subject><subject>Methacrylates - pharmacology</subject><subject>Methylmethacrylate - chemical synthesis</subject><subject>Methylmethacrylate - chemistry</subject><subject>Methylmethacrylate - pharmacology</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Weight</subject><subject>nonfouling</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Platelet Adhesiveness - drug effects</subject><subject>poly(ethylene glycol)</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>Polymethyl methacrylates</subject><subject>Properties and characterization</subject><subject>Reproduction</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Surgical implants</subject><subject>Technology. Biomaterials. Equipments</subject><subject>terpolymer</subject><subject>Terpolymers</subject><subject>Umbilical Veins - cytology</subject><subject>Water - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctvEzEQB2ALgegDTtyrvSAqVRs89vp1gz4SQOVx4HG0vM5s63Yfwd6oDX89DknLrT2NZX0zY_lHyCugE6CUvb2qu4mbcKYBnpBdEIKVlZHi6fpcmZIzI3fIXkpXGUsq2HOyw6g0lTFql7w7xRQu-sL188Jfuuj8iDH8cWMY-mJoim9ns1XrRpwX-X4xtKsOY1GHoXNr59r0gjxrcsGX27pPfkzPvp98KM-_zj6evD8vfWUElGiM4Qq80XP0mtdMUyE5r70yTDOoG1BU0Sa_z6DWgmlsWMNBgKukkoB8n7zZzF3E4fcS02i7kDy2retxWCarNafAtVCPS2mE0gLoo1JV2uQvZCLLwwclSAVMKMpYpkcb6uOQUsTGLmLoXFxZoHYdmM2BWWf_BZb1wXbwsu5wfm_vEsrg9Ra45F3bRNf7kP47DrJiXGYHG3cTWlw9tNN-Ov58t7zc9IQ04u19j4vXViquhP31ZWan8qdkFT22U_4XSkO5Ug</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Heath, Daniel E.</creator><creator>Cooper, Stuart L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20100915</creationdate><title>Design and characterization of PEGylated terpolymer biomaterials</title><author>Heath, Daniel E. ; Cooper, Stuart L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-e999371c98dec83b2805633bc792821bf17070f6059e88528ef2f3151a46761e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adsorption - drug effects</topic><topic>Adult</topic><topic>Applied sciences</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>blood compatible</topic><topic>Blood Platelets - drug effects</topic><topic>Blood Platelets - ultrastructure</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>Cellular</topic><topic>Contact angle</topic><topic>Electrospinning</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - drug effects</topic><topic>Exact sciences and technology</topic><topic>Fibrinogen - metabolism</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Methacrylates - chemical synthesis</topic><topic>Methacrylates - chemistry</topic><topic>Methacrylates - pharmacology</topic><topic>Methylmethacrylate - chemical synthesis</topic><topic>Methylmethacrylate - chemistry</topic><topic>Methylmethacrylate - pharmacology</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Weight</topic><topic>nonfouling</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Platelet Adhesiveness - drug effects</topic><topic>poly(ethylene glycol)</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>Polymethyl methacrylates</topic><topic>Properties and characterization</topic><topic>Reproduction</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Surgical implants</topic><topic>Technology. Biomaterials. Equipments</topic><topic>terpolymer</topic><topic>Terpolymers</topic><topic>Umbilical Veins - cytology</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heath, Daniel E.</creatorcontrib><creatorcontrib>Cooper, Stuart L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heath, Daniel E.</au><au>Cooper, Stuart L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and characterization of PEGylated terpolymer biomaterials</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2010-09-15</date><risdate>2010</risdate><volume>94A</volume><issue>4</issue><spage>1294</spage><epage>1302</epage><pages>1294-1302</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>A terpolymer copolymerized from hexyl methacrylate, methyl methacrylate, and poly(ethylene glycol) methacrylate (PEGMA) was synthesized. Polymers containing 0–25 mol % PEGMA were studied. As the mole fraction of PEGMA in the polymer chains increased, the material becomes more hydrophilic as observed by a decrease in the contact angle of water (81°–68°) and an increase in the equilibrium water absorption (0.7–237 wt %). Furthermore, the material shows nonfouling interfacial properties through resistance to protein adsorption and cellular attachment. A total of 1.2 μg/cm2 fibrinogen, 18,000 HUVECs/cm2, and 3,000,000 platelets/cm2 adsorbed or adhered on non‐PEGylated materials, whereas very low amounts of protein or cells were observed on materials containing ≥15 mol % PEGMA. Being thermoplastic, the polymer can be processed postsynthesis. To illustrate the processing capabilities of the material, polymer solutions were electrospun into nonwoven fibrous scaffold, which also retained their nonfouling character. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20694997</pmid><doi>10.1002/jbm.a.32811</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2010-09, Vol.94A (4), p.1294-1302
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_883013857
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adsorption - drug effects
Adult
Applied sciences
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Biological and medical sciences
Biological properties
Biomedical materials
blood compatible
Blood Platelets - drug effects
Blood Platelets - ultrastructure
Cell Adhesion - drug effects
Cell Proliferation - drug effects
Cellular
Contact angle
Electrospinning
Endothelial Cells - cytology
Endothelial Cells - drug effects
Exact sciences and technology
Fibrinogen - metabolism
Humans
Magnetic Resonance Spectroscopy
Male
Medical sciences
Methacrylates - chemical synthesis
Methacrylates - chemistry
Methacrylates - pharmacology
Methylmethacrylate - chemical synthesis
Methylmethacrylate - chemistry
Methylmethacrylate - pharmacology
Microscopy, Fluorescence
Molecular Weight
nonfouling
Organic polymers
Physicochemistry of polymers
Platelet Adhesiveness - drug effects
poly(ethylene glycol)
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polyethylene Glycols - pharmacology
Polymethyl methacrylates
Properties and characterization
Reproduction
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Surgical implants
Technology. Biomaterials. Equipments
terpolymer
Terpolymers
Umbilical Veins - cytology
Water - chemistry
title Design and characterization of PEGylated terpolymer biomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20characterization%20of%20PEGylated%20terpolymer%20biomaterials&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Heath,%20Daniel%20E.&rft.date=2010-09-15&rft.volume=94A&rft.issue=4&rft.spage=1294&rft.epage=1302&rft.pages=1294-1302&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.32811&rft_dat=%3Cproquest_cross%3E1671257022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671257022&rft_id=info:pmid/20694997&rfr_iscdi=true