Dynamics of electron distributions probed by helium scattering
Helium atom scattering (HAS) is the most important tool for surface science investigations. The analysis of helium scattering off a solid surface allows for a detailed analysis of its structural and dynamical properties. In this work we show how the dynamics of electron distributions at a metal surf...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2009-07, Vol.21 (26), p.264003-264003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264003 |
---|---|
container_issue | 26 |
container_start_page | 264003 |
container_title | Journal of physics. Condensed matter |
container_volume | 21 |
creator | Trioni, M I Fratesi, G Achilli, S Brivio, G P |
description | Helium atom scattering (HAS) is the most important tool for surface science investigations. The analysis of helium scattering off a solid surface allows for a detailed analysis of its structural and dynamical properties. In this work we show how the dynamics of electron distributions at a metal surface can be investigated by HAS in the adiabatic approximation. First we examine the anticorrugating effect, namely the property of the He-surface potential of those metal systems in which the classical turning points of He beams are farther away from the surface layer at the bridge than at top sites. Anticorrugation for the system He/Cu(111) is examined in detail by a density functional theory (DFT) calculation and compared with the corrugating behaviour of He/Al(111). To explain such an effect the charge polarization of the system is crucial. Second we consider theoretically a surprising restricted diffusion result in the normal direction for Na adatoms on Cu(001) at coverages larger than 0.04 ML, obtained by measurements with spin polarized (3)He beams. From DFT calculations for this system a model for the description of the He-surface interaction based on the effective medium theory, which accounts for the observed phenomenon, is discussed. We show that the surface charge distribution probed by HAS is altered by the local concentration of the diffusing adatoms which is fluctuating with time and producing variations in the apparent height of the adatom measured by HAS. Our calculations demonstrate that such electronic dynamical rearrangements can be probed by the (3)He spin echo technique, which could be extended to other studies of surface electronic properties. |
doi_str_mv | 10.1088/0953-8984/21/26/264003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883012266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>883012266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-acc151f789650e4d839af80abc2ff5ff1368a4792d664af314977f73429d5b33</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMozjj6CkM34qpObk3TjSDjFQbczMJdSNNEI72ZpIt5e1M6DoKCEDiLfOec_3wALBG8RpDzFSwykvKC0xVGK8zioxCSIzBHhKGUUf56DOYHaAbOvP-AEFJO6CmYYcQxpxmag5u7XSsbq3zSmUTXWgXXtUllfXC2HILtWp_0rit1lZS75F3XdmgSr2QI2tn27RycGFl7fbGvC7B9uN-un9LNy-Pz-naTKophSKVSKEMm5wXLoKYVJ4U0HMpSYWMyY2JoLmle4IoxKg1BtMhzkxOKiyorCVmAq2lsjPI5aB9EY73SdS1b3Q1ecE4gwpixSLKJVK7z3mkjemcb6XYCQTGaE6MUMUoRGAnMxGQuNi73K4ay0dWh7VtVBC73gIz318bJVln_g2Oc5nhMkE6c7frD799LRV-ZyKPf_D9hvwDBfJIP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883012266</pqid></control><display><type>article</type><title>Dynamics of electron distributions probed by helium scattering</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Trioni, M I ; Fratesi, G ; Achilli, S ; Brivio, G P</creator><creatorcontrib>Trioni, M I ; Fratesi, G ; Achilli, S ; Brivio, G P</creatorcontrib><description>Helium atom scattering (HAS) is the most important tool for surface science investigations. The analysis of helium scattering off a solid surface allows for a detailed analysis of its structural and dynamical properties. In this work we show how the dynamics of electron distributions at a metal surface can be investigated by HAS in the adiabatic approximation. First we examine the anticorrugating effect, namely the property of the He-surface potential of those metal systems in which the classical turning points of He beams are farther away from the surface layer at the bridge than at top sites. Anticorrugation for the system He/Cu(111) is examined in detail by a density functional theory (DFT) calculation and compared with the corrugating behaviour of He/Al(111). To explain such an effect the charge polarization of the system is crucial. Second we consider theoretically a surprising restricted diffusion result in the normal direction for Na adatoms on Cu(001) at coverages larger than 0.04 ML, obtained by measurements with spin polarized (3)He beams. From DFT calculations for this system a model for the description of the He-surface interaction based on the effective medium theory, which accounts for the observed phenomenon, is discussed. We show that the surface charge distribution probed by HAS is altered by the local concentration of the diffusing adatoms which is fluctuating with time and producing variations in the apparent height of the adatom measured by HAS. Our calculations demonstrate that such electronic dynamical rearrangements can be probed by the (3)He spin echo technique, which could be extended to other studies of surface electronic properties.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/21/26/264003</identifier><identifier>PMID: 21828451</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Physics ; Solid surfaces and solid-solid interfaces ; Surface structure and topography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physics. Condensed matter, 2009-07, Vol.21 (26), p.264003-264003</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-acc151f789650e4d839af80abc2ff5ff1368a4792d664af314977f73429d5b33</citedby><cites>FETCH-LOGICAL-c420t-acc151f789650e4d839af80abc2ff5ff1368a4792d664af314977f73429d5b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/21/26/264003/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>310,311,315,781,785,790,791,23935,23936,25145,27929,27930,53835,53915</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21684726$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21828451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trioni, M I</creatorcontrib><creatorcontrib>Fratesi, G</creatorcontrib><creatorcontrib>Achilli, S</creatorcontrib><creatorcontrib>Brivio, G P</creatorcontrib><title>Dynamics of electron distributions probed by helium scattering</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Helium atom scattering (HAS) is the most important tool for surface science investigations. The analysis of helium scattering off a solid surface allows for a detailed analysis of its structural and dynamical properties. In this work we show how the dynamics of electron distributions at a metal surface can be investigated by HAS in the adiabatic approximation. First we examine the anticorrugating effect, namely the property of the He-surface potential of those metal systems in which the classical turning points of He beams are farther away from the surface layer at the bridge than at top sites. Anticorrugation for the system He/Cu(111) is examined in detail by a density functional theory (DFT) calculation and compared with the corrugating behaviour of He/Al(111). To explain such an effect the charge polarization of the system is crucial. Second we consider theoretically a surprising restricted diffusion result in the normal direction for Na adatoms on Cu(001) at coverages larger than 0.04 ML, obtained by measurements with spin polarized (3)He beams. From DFT calculations for this system a model for the description of the He-surface interaction based on the effective medium theory, which accounts for the observed phenomenon, is discussed. We show that the surface charge distribution probed by HAS is altered by the local concentration of the diffusing adatoms which is fluctuating with time and producing variations in the apparent height of the adatom measured by HAS. Our calculations demonstrate that such electronic dynamical rearrangements can be probed by the (3)He spin echo technique, which could be extended to other studies of surface electronic properties.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surface structure and topography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUhoMozjj6CkM34qpObk3TjSDjFQbczMJdSNNEI72ZpIt5e1M6DoKCEDiLfOec_3wALBG8RpDzFSwykvKC0xVGK8zioxCSIzBHhKGUUf56DOYHaAbOvP-AEFJO6CmYYcQxpxmag5u7XSsbq3zSmUTXWgXXtUllfXC2HILtWp_0rit1lZS75F3XdmgSr2QI2tn27RycGFl7fbGvC7B9uN-un9LNy-Pz-naTKophSKVSKEMm5wXLoKYVJ4U0HMpSYWMyY2JoLmle4IoxKg1BtMhzkxOKiyorCVmAq2lsjPI5aB9EY73SdS1b3Q1ecE4gwpixSLKJVK7z3mkjemcb6XYCQTGaE6MUMUoRGAnMxGQuNi73K4ay0dWh7VtVBC73gIz318bJVln_g2Oc5nhMkE6c7frD799LRV-ZyKPf_D9hvwDBfJIP</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Trioni, M I</creator><creator>Fratesi, G</creator><creator>Achilli, S</creator><creator>Brivio, G P</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090701</creationdate><title>Dynamics of electron distributions probed by helium scattering</title><author>Trioni, M I ; Fratesi, G ; Achilli, S ; Brivio, G P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-acc151f789650e4d839af80abc2ff5ff1368a4792d664af314977f73429d5b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surface structure and topography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trioni, M I</creatorcontrib><creatorcontrib>Fratesi, G</creatorcontrib><creatorcontrib>Achilli, S</creatorcontrib><creatorcontrib>Brivio, G P</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trioni, M I</au><au>Fratesi, G</au><au>Achilli, S</au><au>Brivio, G P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of electron distributions probed by helium scattering</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>21</volume><issue>26</issue><spage>264003</spage><epage>264003</epage><pages>264003-264003</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Helium atom scattering (HAS) is the most important tool for surface science investigations. The analysis of helium scattering off a solid surface allows for a detailed analysis of its structural and dynamical properties. In this work we show how the dynamics of electron distributions at a metal surface can be investigated by HAS in the adiabatic approximation. First we examine the anticorrugating effect, namely the property of the He-surface potential of those metal systems in which the classical turning points of He beams are farther away from the surface layer at the bridge than at top sites. Anticorrugation for the system He/Cu(111) is examined in detail by a density functional theory (DFT) calculation and compared with the corrugating behaviour of He/Al(111). To explain such an effect the charge polarization of the system is crucial. Second we consider theoretically a surprising restricted diffusion result in the normal direction for Na adatoms on Cu(001) at coverages larger than 0.04 ML, obtained by measurements with spin polarized (3)He beams. From DFT calculations for this system a model for the description of the He-surface interaction based on the effective medium theory, which accounts for the observed phenomenon, is discussed. We show that the surface charge distribution probed by HAS is altered by the local concentration of the diffusing adatoms which is fluctuating with time and producing variations in the apparent height of the adatom measured by HAS. Our calculations demonstrate that such electronic dynamical rearrangements can be probed by the (3)He spin echo technique, which could be extended to other studies of surface electronic properties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21828451</pmid><doi>10.1088/0953-8984/21/26/264003</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2009-07, Vol.21 (26), p.264003-264003 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_proquest_miscellaneous_883012266 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology Physics Solid surfaces and solid-solid interfaces Surface structure and topography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Dynamics of electron distributions probed by helium scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20electron%20distributions%20probed%20by%20helium%20scattering&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Trioni,%20M%20I&rft.date=2009-07-01&rft.volume=21&rft.issue=26&rft.spage=264003&rft.epage=264003&rft.pages=264003-264003&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/21/26/264003&rft_dat=%3Cproquest_cross%3E883012266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883012266&rft_id=info:pmid/21828451&rfr_iscdi=true |