Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells

Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-08, Vol.11 (8), p.3163-3168
Hauptverfasser: Wang, Dong Hwan, Moon, Ji Sun, Seifter, Jason, Jo, Jang, Park, Jong Hyeok, Park, O Ok, Heeger, Alan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3168
container_issue 8
container_start_page 3163
container_title Nano letters
container_volume 11
creator Wang, Dong Hwan
Moon, Ji Sun
Seifter, Jason
Jo, Jang
Park, Jong Hyeok
Park, O Ok
Heeger, Alan J
description Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.
doi_str_mv 10.1021/nl202320r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883007081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762055763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</originalsourceid><addsrcrecordid>eNp90E1PwyAYB3BiNE6nB7-A4WLUQ5WXUoo3bdSZLGoyPTeU0dlJYUJ72LcXs7ldjCeekF-elz8AJxhdYUTwtTUEEUqQ3wEHmFGUZEKQ3U2dpwNwGMIcISQoQ_tgQDBnmAt2ACYT_dVr2zXSwFfvlA6hsbMbWDjbeWegq-GztK51fvHhjJstYWPhXW8-4Uh32rt5b1XXOAsnzkgPC21MOAJ7tTRBH6_fIXh_uH8rRsn45fGpuB0nknLeJSwnlUixUoxULBNUI5KRSqtUqlzqNH7QSkmJVSWUTlldCUpxPFNpLlRWT-kQnK_6LryLR4SubJug4gbSateHMs8pQhzlOMqLfyXmGUGM8YxGermiyrsQvK7LhW9a6ZclRuVP2uUm7WhP1237qtXTjfyNN4KzNZBBSVN7aVUTti5NsRAo3TqpQjl3vbcxtz8GfgPyP5NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762055763</pqid></control><display><type>article</type><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><source>American Chemical Society Journals</source><creator>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</creator><creatorcontrib>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</creatorcontrib><description>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl202320r</identifier><identifier>PMID: 21751795</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Butyric acid ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electronics ; Energy ; Energy conversion efficiency ; Esters ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Growth from solutions ; Heterojunctions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Molecular electronics, nanoelectronics ; Nanostructure ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Specific materials</subject><ispartof>Nano letters, 2011-08, Vol.11 (8), p.3163-3168</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</citedby><cites>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl202320r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl202320r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24419904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21751795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Moon, Ji Sun</creatorcontrib><creatorcontrib>Seifter, Jason</creatorcontrib><creatorcontrib>Jo, Jang</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</description><subject>Applied sciences</subject><subject>Butyric acid</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Growth from solutions</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Specific materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAYB3BiNE6nB7-A4WLUQ5WXUoo3bdSZLGoyPTeU0dlJYUJ72LcXs7ldjCeekF-elz8AJxhdYUTwtTUEEUqQ3wEHmFGUZEKQ3U2dpwNwGMIcISQoQ_tgQDBnmAt2ACYT_dVr2zXSwFfvlA6hsbMbWDjbeWegq-GztK51fvHhjJstYWPhXW8-4Uh32rt5b1XXOAsnzkgPC21MOAJ7tTRBH6_fIXh_uH8rRsn45fGpuB0nknLeJSwnlUixUoxULBNUI5KRSqtUqlzqNH7QSkmJVSWUTlldCUpxPFNpLlRWT-kQnK_6LryLR4SubJug4gbSateHMs8pQhzlOMqLfyXmGUGM8YxGermiyrsQvK7LhW9a6ZclRuVP2uUm7WhP1237qtXTjfyNN4KzNZBBSVN7aVUTti5NsRAo3TqpQjl3vbcxtz8GfgPyP5NQ</recordid><startdate>20110810</startdate><enddate>20110810</enddate><creator>Wang, Dong Hwan</creator><creator>Moon, Ji Sun</creator><creator>Seifter, Jason</creator><creator>Jo, Jang</creator><creator>Park, Jong Hyeok</creator><creator>Park, O Ok</creator><creator>Heeger, Alan J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110810</creationdate><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><author>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Butyric acid</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Growth from solutions</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Moon, Ji Sun</creatorcontrib><creatorcontrib>Seifter, Jason</creatorcontrib><creatorcontrib>Jo, Jang</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong Hwan</au><au>Moon, Ji Sun</au><au>Seifter, Jason</au><au>Jo, Jang</au><au>Park, Jong Hyeok</au><au>Park, O Ok</au><au>Heeger, Alan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-08-10</date><risdate>2011</risdate><volume>11</volume><issue>8</issue><spage>3163</spage><epage>3168</epage><pages>3163-3168</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21751795</pmid><doi>10.1021/nl202320r</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2011-08, Vol.11 (8), p.3163-3168
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_883007081
source American Chemical Society Journals
subjects Applied sciences
Butyric acid
Cross-disciplinary physics: materials science
rheology
Deposition
Electronics
Energy
Energy conversion efficiency
Esters
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Growth from solutions
Heterojunctions
Materials science
Methods of crystal growth
physics of crystal growth
Molecular electronics, nanoelectronics
Nanostructure
Natural energy
Photovoltaic cells
Photovoltaic conversion
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Specific materials
title Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Processing:%20Control%20of%20Nanomorphology%20in%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Nano%20letters&rft.au=Wang,%20Dong%20Hwan&rft.date=2011-08-10&rft.volume=11&rft.issue=8&rft.spage=3163&rft.epage=3168&rft.pages=3163-3168&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl202320r&rft_dat=%3Cproquest_cross%3E1762055763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762055763&rft_id=info:pmid/21751795&rfr_iscdi=true