Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells
Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the to...
Gespeichert in:
Veröffentlicht in: | Nano letters 2011-08, Vol.11 (8), p.3163-3168 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3168 |
---|---|
container_issue | 8 |
container_start_page | 3163 |
container_title | Nano letters |
container_volume | 11 |
creator | Wang, Dong Hwan Moon, Ji Sun Seifter, Jason Jo, Jang Park, Jong Hyeok Park, O Ok Heeger, Alan J |
description | Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material. |
doi_str_mv | 10.1021/nl202320r |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_883007081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762055763</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</originalsourceid><addsrcrecordid>eNp90E1PwyAYB3BiNE6nB7-A4WLUQ5WXUoo3bdSZLGoyPTeU0dlJYUJ72LcXs7ldjCeekF-elz8AJxhdYUTwtTUEEUqQ3wEHmFGUZEKQ3U2dpwNwGMIcISQoQ_tgQDBnmAt2ACYT_dVr2zXSwFfvlA6hsbMbWDjbeWegq-GztK51fvHhjJstYWPhXW8-4Uh32rt5b1XXOAsnzkgPC21MOAJ7tTRBH6_fIXh_uH8rRsn45fGpuB0nknLeJSwnlUixUoxULBNUI5KRSqtUqlzqNH7QSkmJVSWUTlldCUpxPFNpLlRWT-kQnK_6LryLR4SubJug4gbSateHMs8pQhzlOMqLfyXmGUGM8YxGermiyrsQvK7LhW9a6ZclRuVP2uUm7WhP1237qtXTjfyNN4KzNZBBSVN7aVUTti5NsRAo3TqpQjl3vbcxtz8GfgPyP5NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762055763</pqid></control><display><type>article</type><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><source>American Chemical Society Journals</source><creator>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</creator><creatorcontrib>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</creatorcontrib><description>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl202320r</identifier><identifier>PMID: 21751795</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Butyric acid ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electronics ; Energy ; Energy conversion efficiency ; Esters ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Growth from solutions ; Heterojunctions ; Materials science ; Methods of crystal growth; physics of crystal growth ; Molecular electronics, nanoelectronics ; Nanostructure ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Specific materials</subject><ispartof>Nano letters, 2011-08, Vol.11 (8), p.3163-3168</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</citedby><cites>FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl202320r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl202320r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24419904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21751795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Moon, Ji Sun</creatorcontrib><creatorcontrib>Seifter, Jason</creatorcontrib><creatorcontrib>Jo, Jang</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</description><subject>Applied sciences</subject><subject>Butyric acid</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electronics</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Esters</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Growth from solutions</subject><subject>Heterojunctions</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Specific materials</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp90E1PwyAYB3BiNE6nB7-A4WLUQ5WXUoo3bdSZLGoyPTeU0dlJYUJ72LcXs7ldjCeekF-elz8AJxhdYUTwtTUEEUqQ3wEHmFGUZEKQ3U2dpwNwGMIcISQoQ_tgQDBnmAt2ACYT_dVr2zXSwFfvlA6hsbMbWDjbeWegq-GztK51fvHhjJstYWPhXW8-4Uh32rt5b1XXOAsnzkgPC21MOAJ7tTRBH6_fIXh_uH8rRsn45fGpuB0nknLeJSwnlUixUoxULBNUI5KRSqtUqlzqNH7QSkmJVSWUTlldCUpxPFNpLlRWT-kQnK_6LryLR4SubJug4gbSateHMs8pQhzlOMqLfyXmGUGM8YxGermiyrsQvK7LhW9a6ZclRuVP2uUm7WhP1237qtXTjfyNN4KzNZBBSVN7aVUTti5NsRAo3TqpQjl3vbcxtz8GfgPyP5NQ</recordid><startdate>20110810</startdate><enddate>20110810</enddate><creator>Wang, Dong Hwan</creator><creator>Moon, Ji Sun</creator><creator>Seifter, Jason</creator><creator>Jo, Jang</creator><creator>Park, Jong Hyeok</creator><creator>Park, O Ok</creator><creator>Heeger, Alan J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110810</creationdate><title>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</title><author>Wang, Dong Hwan ; Moon, Ji Sun ; Seifter, Jason ; Jo, Jang ; Park, Jong Hyeok ; Park, O Ok ; Heeger, Alan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-582b941cc52b5693e0262bec4ac8ae493e3bcaa1cb9ce45fb9331232ce79c6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Butyric acid</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electronics</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Esters</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Growth from solutions</topic><topic>Heterojunctions</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Moon, Ji Sun</creatorcontrib><creatorcontrib>Seifter, Jason</creatorcontrib><creatorcontrib>Jo, Jang</creatorcontrib><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><creatorcontrib>Heeger, Alan J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dong Hwan</au><au>Moon, Ji Sun</au><au>Seifter, Jason</au><au>Jo, Jang</au><au>Park, Jong Hyeok</au><au>Park, O Ok</au><au>Heeger, Alan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2011-08-10</date><risdate>2011</risdate><volume>11</volume><issue>8</issue><spage>3163</spage><epage>3168</epage><pages>3163-3168</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Bulk heterojunction organic photovoltaic devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT)/[6,6]-phenyl C70 butyric acid methyl ester (PC70BM) can be successfully fabricated by a sequential solution deposition process. When the top layer is deposited from an appropriate cosolvent, the PC70BM penetrates a predeposited bottom layer of PCDTBT during the spin-casting process, resulting in an interdiffused structure with a layer-evolved bulk heterojunction (LE-BHJ) nanomorphology. The PCDTBT:PC70BM LE-BHJ solar cells prepared with an optimized cosolvent ratio have comparable power conversion efficiency to the conventional BHJ solar cells. The nanomorphology of the optimized PCDTBT:PC70BM LE-BHJ mixture was found to have better vertical connectivity than the conventional BHJ material.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21751795</pmid><doi>10.1021/nl202320r</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2011-08, Vol.11 (8), p.3163-3168 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_883007081 |
source | American Chemical Society Journals |
subjects | Applied sciences Butyric acid Cross-disciplinary physics: materials science rheology Deposition Electronics Energy Energy conversion efficiency Esters Exact sciences and technology Fullerenes and related materials diamonds, graphite Growth from solutions Heterojunctions Materials science Methods of crystal growth physics of crystal growth Molecular electronics, nanoelectronics Nanostructure Natural energy Photovoltaic cells Photovoltaic conversion Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solar cells Solar cells. Photoelectrochemical cells Solar energy Specific materials |
title | Sequential Processing: Control of Nanomorphology in Bulk Heterojunction Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20Processing:%20Control%20of%20Nanomorphology%20in%20Bulk%20Heterojunction%20Solar%20Cells&rft.jtitle=Nano%20letters&rft.au=Wang,%20Dong%20Hwan&rft.date=2011-08-10&rft.volume=11&rft.issue=8&rft.spage=3163&rft.epage=3168&rft.pages=3163-3168&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl202320r&rft_dat=%3Cproquest_cross%3E1762055763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762055763&rft_id=info:pmid/21751795&rfr_iscdi=true |