Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges

Self‐assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2011-08, Vol.7 (15), p.2133-2146
Hauptverfasser: Gao, Yan, Tang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 15
container_start_page 2133
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 7
creator Gao, Yan
Tang, Zhiyong
description Self‐assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA‐based and polymer‐based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self‐assembly of binary or ternary NPs. Different from their individual NP counterparts, these self‐assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field‐effect transistors, magnetoresistive components, optical information recording, and solar cells. Self‐assembly of inorganic nanoparticles into functional superstructures have attracted a lot of attention recently. The combination of inorganic nanoparticles and polymers or DNA gives rise to various applications, for example, photonic storage material. This review summarizes the latest progress in terms of design and application of inorganic nanoparticle superstructures and proposes its future challenges.
doi_str_mv 10.1002/smll.201100474
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_881086649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>881086649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4814-c5a25acb5a58e77a804c936dc0232d9e975a57b3c6b3fd736785fe9e6c25e8763</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIiHQUiJ30OzFH7u2ly66kBDpCMWCkGgsn3f2WPB5N_4Q5L_HxyUnqqSaGc3vveI9hF5TsqCEsNO4dW7BCC1HLesn6JgKyiuhWPv0sFNyhF7E-JMQTlktn6MjRgUToqXHaDiHOG48Nr7HZ_PsRmvSOHk8DfjKT2Fj_GjxtfHTbEIarQPc5RlCTCHblAPE93iZQwCfcJdMyvGf00Xe_bD9YZwDv4H4Ej0bjIvw6m6eoK8XH74sP1arz5dXy7NVZWtF68o2hjXGrhvTKJDSKFLbloveEsZZ30Iry0euuRVrPvSSC6maAVoQljWgpOAn6O3edw7TTYaY9HaMFpwzHqYctSphKCHqtpDvHiTpLiylGCcFXexRG6YYAwx6DuPWhNsC6V0LeteCPrRQBG_uvPN6C_0Bv4-9AO0e-D06uH3ETnefVqv_zau9dowJ_hy0JvzSQnLZ6G_Xl3rZnYvue9EK_hcmQKP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031288230</pqid></control><display><type>article</type><title>Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Gao, Yan ; Tang, Zhiyong</creator><creatorcontrib>Gao, Yan ; Tang, Zhiyong</creatorcontrib><description>Self‐assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA‐based and polymer‐based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self‐assembly of binary or ternary NPs. Different from their individual NP counterparts, these self‐assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field‐effect transistors, magnetoresistive components, optical information recording, and solar cells. Self‐assembly of inorganic nanoparticles into functional superstructures have attracted a lot of attention recently. The combination of inorganic nanoparticles and polymers or DNA gives rise to various applications, for example, photonic storage material. This review summarizes the latest progress in terms of design and application of inorganic nanoparticle superstructures and proposes its future challenges.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201100474</identifier><identifier>PMID: 21626691</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Devices ; DNA ; DNA - chemistry ; Electronics ; inorganic nanoparticles ; Nanomaterials ; Nanoparticles - chemistry ; Nanostructure ; Nanotechnology - methods ; Photonics ; polymeric materials ; Polymers - chemistry ; Recording ; Self assembly ; structure-property relationships ; Superstructures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2011-08, Vol.7 (15), p.2133-2146</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4814-c5a25acb5a58e77a804c936dc0232d9e975a57b3c6b3fd736785fe9e6c25e8763</citedby><cites>FETCH-LOGICAL-c4814-c5a25acb5a58e77a804c936dc0232d9e975a57b3c6b3fd736785fe9e6c25e8763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201100474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201100474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21626691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><title>Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Self‐assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA‐based and polymer‐based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self‐assembly of binary or ternary NPs. Different from their individual NP counterparts, these self‐assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field‐effect transistors, magnetoresistive components, optical information recording, and solar cells. Self‐assembly of inorganic nanoparticles into functional superstructures have attracted a lot of attention recently. The combination of inorganic nanoparticles and polymers or DNA gives rise to various applications, for example, photonic storage material. This review summarizes the latest progress in terms of design and application of inorganic nanoparticle superstructures and proposes its future challenges.</description><subject>Devices</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electronics</subject><subject>inorganic nanoparticles</subject><subject>Nanomaterials</subject><subject>Nanoparticles - chemistry</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Photonics</subject><subject>polymeric materials</subject><subject>Polymers - chemistry</subject><subject>Recording</subject><subject>Self assembly</subject><subject>structure-property relationships</subject><subject>Superstructures</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIiHQUiJ30OzFH7u2ly66kBDpCMWCkGgsn3f2WPB5N_4Q5L_HxyUnqqSaGc3vveI9hF5TsqCEsNO4dW7BCC1HLesn6JgKyiuhWPv0sFNyhF7E-JMQTlktn6MjRgUToqXHaDiHOG48Nr7HZ_PsRmvSOHk8DfjKT2Fj_GjxtfHTbEIarQPc5RlCTCHblAPE93iZQwCfcJdMyvGf00Xe_bD9YZwDv4H4Ej0bjIvw6m6eoK8XH74sP1arz5dXy7NVZWtF68o2hjXGrhvTKJDSKFLbloveEsZZ30Iry0euuRVrPvSSC6maAVoQljWgpOAn6O3edw7TTYaY9HaMFpwzHqYctSphKCHqtpDvHiTpLiylGCcFXexRG6YYAwx6DuPWhNsC6V0LeteCPrRQBG_uvPN6C_0Bv4-9AO0e-D06uH3ETnefVqv_zau9dowJ_hy0JvzSQnLZ6G_Xl3rZnYvue9EK_hcmQKP4</recordid><startdate>20110808</startdate><enddate>20110808</enddate><creator>Gao, Yan</creator><creator>Tang, Zhiyong</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20110808</creationdate><title>Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges</title><author>Gao, Yan ; Tang, Zhiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4814-c5a25acb5a58e77a804c936dc0232d9e975a57b3c6b3fd736785fe9e6c25e8763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Devices</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electronics</topic><topic>inorganic nanoparticles</topic><topic>Nanomaterials</topic><topic>Nanoparticles - chemistry</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Photonics</topic><topic>polymeric materials</topic><topic>Polymers - chemistry</topic><topic>Recording</topic><topic>Self assembly</topic><topic>structure-property relationships</topic><topic>Superstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Tang, Zhiyong</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Tang, Zhiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2011-08-08</date><risdate>2011</risdate><volume>7</volume><issue>15</issue><spage>2133</spage><epage>2146</epage><pages>2133-2146</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Self‐assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA‐based and polymer‐based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self‐assembly of binary or ternary NPs. Different from their individual NP counterparts, these self‐assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field‐effect transistors, magnetoresistive components, optical information recording, and solar cells. Self‐assembly of inorganic nanoparticles into functional superstructures have attracted a lot of attention recently. The combination of inorganic nanoparticles and polymers or DNA gives rise to various applications, for example, photonic storage material. This review summarizes the latest progress in terms of design and application of inorganic nanoparticle superstructures and proposes its future challenges.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21626691</pmid><doi>10.1002/smll.201100474</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2011-08, Vol.7 (15), p.2133-2146
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_881086649
source MEDLINE; Wiley Online Library All Journals
subjects Devices
DNA
DNA - chemistry
Electronics
inorganic nanoparticles
Nanomaterials
Nanoparticles - chemistry
Nanostructure
Nanotechnology - methods
Photonics
polymeric materials
Polymers - chemistry
Recording
Self assembly
structure-property relationships
Superstructures
title Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Application%20of%20Inorganic%20Nanoparticle%20Superstructures:%20Current%20Status%20and%20Future%20challenges&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gao,%20Yan&rft.date=2011-08-08&rft.volume=7&rft.issue=15&rft.spage=2133&rft.epage=2146&rft.pages=2133-2146&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201100474&rft_dat=%3Cproquest_cross%3E881086649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031288230&rft_id=info:pmid/21626691&rfr_iscdi=true