Level set methods for finding critical points of mountain pass type
Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-08, Vol.74 (12), p.4058-4082 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4082 |
---|---|
container_issue | 12 |
container_start_page | 4058 |
container_title | Nonlinear analysis |
container_volume | 74 |
creator | Lewis, Adrian S. Pang, C.H. Jeffrey |
description | Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory. |
doi_str_mv | 10.1016/j.na.2011.03.039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880697985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11001696</els_id><sourcerecordid>880697985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3j7mIp6356GY33qT4BQUvCt7CNJnVlG2yJqngf--WFm_Cg4Hh994wj5BLzmaccXWzngWYCcb5jMlR-ohMeNvIqha8PiYTJpWo6rl6PyVnOa8ZY7yRakIWS_zGnmYsdIPlM7pMu5ho54Pz4YPa5Iu30NMh-lAyjR3dxG0o4AMdIGdafgY8Jycd9BkvDnNK3h7uXxdP1fLl8Xlxt6ys1G2pnBRaNa3WdjVvoK1xZaFRq9Z1wARqVHMtGuXGtVzVIKXiDsE54VzdAdRMTsn1PndI8WuLuZiNzxb7HgLGbTZty5RudFuPJNuTNsWcE3ZmSH4D6cdwZnZ1mbUJYHZ1GSZH6dFydQiHPD7cJQjW5z-fmAshGiFH7nbP4fjpt8dksvUYLDqf0Bbjov__yC-_83-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880697985</pqid></control><display><type>article</type><title>Level set methods for finding critical points of mountain pass type</title><source>Elsevier ScienceDirect Journals</source><creator>Lewis, Adrian S. ; Pang, C.H. Jeffrey</creator><creatorcontrib>Lewis, Adrian S. ; Pang, C.H. Jeffrey</creatorcontrib><description>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.03.039</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Critical point ; Eigenvalues ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Metric critical point theory ; Mountain pass ; Mountains ; Nonlinearity ; Nonsmooth critical points ; Partial differential equations ; Sciences and techniques of general use ; Strategy ; Superlinear convergence ; Wilkinson distance</subject><ispartof>Nonlinear analysis, 2011-08, Vol.74 (12), p.4058-4082</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</citedby><cites>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X11001696$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24222723$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Adrian S.</creatorcontrib><creatorcontrib>Pang, C.H. Jeffrey</creatorcontrib><title>Level set methods for finding critical points of mountain pass type</title><title>Nonlinear analysis</title><description>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</description><subject>Critical point</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Metric critical point theory</subject><subject>Mountain pass</subject><subject>Mountains</subject><subject>Nonlinearity</subject><subject>Nonsmooth critical points</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Strategy</subject><subject>Superlinear convergence</subject><subject>Wilkinson distance</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3j7mIp6356GY33qT4BQUvCt7CNJnVlG2yJqngf--WFm_Cg4Hh994wj5BLzmaccXWzngWYCcb5jMlR-ohMeNvIqha8PiYTJpWo6rl6PyVnOa8ZY7yRakIWS_zGnmYsdIPlM7pMu5ho54Pz4YPa5Iu30NMh-lAyjR3dxG0o4AMdIGdafgY8Jycd9BkvDnNK3h7uXxdP1fLl8Xlxt6ys1G2pnBRaNa3WdjVvoK1xZaFRq9Z1wARqVHMtGuXGtVzVIKXiDsE54VzdAdRMTsn1PndI8WuLuZiNzxb7HgLGbTZty5RudFuPJNuTNsWcE3ZmSH4D6cdwZnZ1mbUJYHZ1GSZH6dFydQiHPD7cJQjW5z-fmAshGiFH7nbP4fjpt8dksvUYLDqf0Bbjov__yC-_83-q</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Lewis, Adrian S.</creator><creator>Pang, C.H. Jeffrey</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Level set methods for finding critical points of mountain pass type</title><author>Lewis, Adrian S. ; Pang, C.H. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Critical point</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Metric critical point theory</topic><topic>Mountain pass</topic><topic>Mountains</topic><topic>Nonlinearity</topic><topic>Nonsmooth critical points</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Strategy</topic><topic>Superlinear convergence</topic><topic>Wilkinson distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Adrian S.</creatorcontrib><creatorcontrib>Pang, C.H. Jeffrey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Adrian S.</au><au>Pang, C.H. Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level set methods for finding critical points of mountain pass type</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>74</volume><issue>12</issue><spage>4058</spage><epage>4082</epage><pages>4058-4082</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.03.039</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2011-08, Vol.74 (12), p.4058-4082 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_880697985 |
source | Elsevier ScienceDirect Journals |
subjects | Critical point Eigenvalues Exact sciences and technology Mathematical analysis Mathematical models Mathematics Metric critical point theory Mountain pass Mountains Nonlinearity Nonsmooth critical points Partial differential equations Sciences and techniques of general use Strategy Superlinear convergence Wilkinson distance |
title | Level set methods for finding critical points of mountain pass type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20set%20methods%20for%20finding%20critical%20points%20of%20mountain%20pass%20type&rft.jtitle=Nonlinear%20analysis&rft.au=Lewis,%20Adrian%20S.&rft.date=2011-08-01&rft.volume=74&rft.issue=12&rft.spage=4058&rft.epage=4082&rft.pages=4058-4082&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.03.039&rft_dat=%3Cproquest_cross%3E880697985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880697985&rft_id=info:pmid/&rft_els_id=S0362546X11001696&rfr_iscdi=true |