Level set methods for finding critical points of mountain pass type

Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-08, Vol.74 (12), p.4058-4082
Hauptverfasser: Lewis, Adrian S., Pang, C.H. Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4082
container_issue 12
container_start_page 4058
container_title Nonlinear analysis
container_volume 74
creator Lewis, Adrian S.
Pang, C.H. Jeffrey
description Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.
doi_str_mv 10.1016/j.na.2011.03.039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880697985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X11001696</els_id><sourcerecordid>880697985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3j7mIp6356GY33qT4BQUvCt7CNJnVlG2yJqngf--WFm_Cg4Hh994wj5BLzmaccXWzngWYCcb5jMlR-ohMeNvIqha8PiYTJpWo6rl6PyVnOa8ZY7yRakIWS_zGnmYsdIPlM7pMu5ho54Pz4YPa5Iu30NMh-lAyjR3dxG0o4AMdIGdafgY8Jycd9BkvDnNK3h7uXxdP1fLl8Xlxt6ys1G2pnBRaNa3WdjVvoK1xZaFRq9Z1wARqVHMtGuXGtVzVIKXiDsE54VzdAdRMTsn1PndI8WuLuZiNzxb7HgLGbTZty5RudFuPJNuTNsWcE3ZmSH4D6cdwZnZ1mbUJYHZ1GSZH6dFydQiHPD7cJQjW5z-fmAshGiFH7nbP4fjpt8dksvUYLDqf0Bbjov__yC-_83-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880697985</pqid></control><display><type>article</type><title>Level set methods for finding critical points of mountain pass type</title><source>Elsevier ScienceDirect Journals</source><creator>Lewis, Adrian S. ; Pang, C.H. Jeffrey</creator><creatorcontrib>Lewis, Adrian S. ; Pang, C.H. Jeffrey</creatorcontrib><description>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2011.03.039</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Critical point ; Eigenvalues ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Metric critical point theory ; Mountain pass ; Mountains ; Nonlinearity ; Nonsmooth critical points ; Partial differential equations ; Sciences and techniques of general use ; Strategy ; Superlinear convergence ; Wilkinson distance</subject><ispartof>Nonlinear analysis, 2011-08, Vol.74 (12), p.4058-4082</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</citedby><cites>FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X11001696$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24222723$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewis, Adrian S.</creatorcontrib><creatorcontrib>Pang, C.H. Jeffrey</creatorcontrib><title>Level set methods for finding critical points of mountain pass type</title><title>Nonlinear analysis</title><description>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</description><subject>Critical point</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Metric critical point theory</subject><subject>Mountain pass</subject><subject>Mountains</subject><subject>Nonlinearity</subject><subject>Nonsmooth critical points</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Strategy</subject><subject>Superlinear convergence</subject><subject>Wilkinson distance</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3j7mIp6356GY33qT4BQUvCt7CNJnVlG2yJqngf--WFm_Cg4Hh994wj5BLzmaccXWzngWYCcb5jMlR-ohMeNvIqha8PiYTJpWo6rl6PyVnOa8ZY7yRakIWS_zGnmYsdIPlM7pMu5ho54Pz4YPa5Iu30NMh-lAyjR3dxG0o4AMdIGdafgY8Jycd9BkvDnNK3h7uXxdP1fLl8Xlxt6ys1G2pnBRaNa3WdjVvoK1xZaFRq9Z1wARqVHMtGuXGtVzVIKXiDsE54VzdAdRMTsn1PndI8WuLuZiNzxb7HgLGbTZty5RudFuPJNuTNsWcE3ZmSH4D6cdwZnZ1mbUJYHZ1GSZH6dFydQiHPD7cJQjW5z-fmAshGiFH7nbP4fjpt8dksvUYLDqf0Bbjov__yC-_83-q</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Lewis, Adrian S.</creator><creator>Pang, C.H. Jeffrey</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Level set methods for finding critical points of mountain pass type</title><author>Lewis, Adrian S. ; Pang, C.H. Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d32967899cb47a85ebca76b8dfa02e9e649276debc3b5a3361deadd2dd5faa503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Critical point</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Metric critical point theory</topic><topic>Mountain pass</topic><topic>Mountains</topic><topic>Nonlinearity</topic><topic>Nonsmooth critical points</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Strategy</topic><topic>Superlinear convergence</topic><topic>Wilkinson distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewis, Adrian S.</creatorcontrib><creatorcontrib>Pang, C.H. Jeffrey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewis, Adrian S.</au><au>Pang, C.H. Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Level set methods for finding critical points of mountain pass type</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>74</volume><issue>12</issue><spage>4058</spage><epage>4082</epage><pages>4058-4082</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Computing mountain passes is a standard way of finding critical points. We describe a numerical method for finding critical points that is convergent in the nonsmooth case and locally superlinearly convergent in the smooth finite dimensional case. We apply these techniques to describe a strategy for addressing the Wilkinson problem of calculating the distance from a matrix to a closest matrix with repeated eigenvalues. Finally, we relate critical points of mountain pass type to nonsmooth and metric critical point theory.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2011.03.039</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2011-08, Vol.74 (12), p.4058-4082
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_880697985
source Elsevier ScienceDirect Journals
subjects Critical point
Eigenvalues
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Metric critical point theory
Mountain pass
Mountains
Nonlinearity
Nonsmooth critical points
Partial differential equations
Sciences and techniques of general use
Strategy
Superlinear convergence
Wilkinson distance
title Level set methods for finding critical points of mountain pass type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Level%20set%20methods%20for%20finding%20critical%20points%20of%20mountain%20pass%20type&rft.jtitle=Nonlinear%20analysis&rft.au=Lewis,%20Adrian%20S.&rft.date=2011-08-01&rft.volume=74&rft.issue=12&rft.spage=4058&rft.epage=4082&rft.pages=4058-4082&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2011.03.039&rft_dat=%3Cproquest_cross%3E880697985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880697985&rft_id=info:pmid/&rft_els_id=S0362546X11001696&rfr_iscdi=true