The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes

The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2010-06, Vol.20 (11), p.1762-1766
Hauptverfasser: Hamwi, Sami, Meyer, Jens, Kröger, Michael, Winkler, Thomas, Witte, Marco, Riedl, Thomas, Kahn, Antoine, Kowalsky, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1766
container_issue 11
container_start_page 1762
container_title Advanced functional materials
container_volume 20
creator Hamwi, Sami
Meyer, Jens
Kröger, Michael
Winkler, Thomas
Witte, Marco
Riedl, Thomas
Kahn, Antoine
Kowalsky, Wolfgang
description The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED. Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.
doi_str_mv 10.1002/adfm.201000301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880690390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880690390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</originalsourceid><addsrcrecordid>eNqFkE1PAjEURRujiYpuXXfnarCd0s50qSioAUkUP3bNo_MGqsMMtkOEf-8ghrgzecm7i3Pu4hJyxlmbMxZfQJbP2zFrMhOM75EjrriKBIvT_V3mb4fkOIR3xniSiM4RceMZ0seqQFrldOyhDK52VUmHWENBRyuXYaCupN0Z-ClGfSzRww8xgDX6QPPK06ca7AdmdOSnUDpLB246q6ObuatrV07ptaualhNykEMR8PT3t8hz72bcvY0Go_5d93IQWSElj1QHpGSp5RZYmrIk5XGKGMcM9KSToZTaxplWHc3BClQIE6knQkmukzTWOYgWOd_2Lnz1ucRQm7kLFosCSqyWwTSlSjPRXIu0t6T1VQgec7Pwbg5-bTgzm0nNZlKzm7QR9Fb4cgWu_6HN5XVv-NeNtq4LNa52LvgPoxKRSPP60DdX95I_qRdmtPgGzSmI4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880690390</pqid></control><display><type>article</type><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</creator><creatorcontrib>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</creatorcontrib><description>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED. Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201000301</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amines ; Charge ; charge generation layers ; Devices ; Inverse ; Organic light emitting diodes ; Simulation ; Transition metal oxides ; Tungsten oxides</subject><ispartof>Advanced functional materials, 2010-06, Vol.20 (11), p.1762-1766</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</citedby><cites>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201000301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201000301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hamwi, Sami</creatorcontrib><creatorcontrib>Meyer, Jens</creatorcontrib><creatorcontrib>Kröger, Michael</creatorcontrib><creatorcontrib>Winkler, Thomas</creatorcontrib><creatorcontrib>Witte, Marco</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Kowalsky, Wolfgang</creatorcontrib><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED. Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</description><subject>Amines</subject><subject>Charge</subject><subject>charge generation layers</subject><subject>Devices</subject><subject>Inverse</subject><subject>Organic light emitting diodes</subject><subject>Simulation</subject><subject>Transition metal oxides</subject><subject>Tungsten oxides</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEURRujiYpuXXfnarCd0s50qSioAUkUP3bNo_MGqsMMtkOEf-8ghrgzecm7i3Pu4hJyxlmbMxZfQJbP2zFrMhOM75EjrriKBIvT_V3mb4fkOIR3xniSiM4RceMZ0seqQFrldOyhDK52VUmHWENBRyuXYaCupN0Z-ClGfSzRww8xgDX6QPPK06ca7AdmdOSnUDpLB246q6ObuatrV07ptaualhNykEMR8PT3t8hz72bcvY0Go_5d93IQWSElj1QHpGSp5RZYmrIk5XGKGMcM9KSToZTaxplWHc3BClQIE6knQkmukzTWOYgWOd_2Lnz1ucRQm7kLFosCSqyWwTSlSjPRXIu0t6T1VQgec7Pwbg5-bTgzm0nNZlKzm7QR9Fb4cgWu_6HN5XVv-NeNtq4LNa52LvgPoxKRSPP60DdX95I_qRdmtPgGzSmI4Q</recordid><startdate>20100609</startdate><enddate>20100609</enddate><creator>Hamwi, Sami</creator><creator>Meyer, Jens</creator><creator>Kröger, Michael</creator><creator>Winkler, Thomas</creator><creator>Witte, Marco</creator><creator>Riedl, Thomas</creator><creator>Kahn, Antoine</creator><creator>Kowalsky, Wolfgang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100609</creationdate><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><author>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amines</topic><topic>Charge</topic><topic>charge generation layers</topic><topic>Devices</topic><topic>Inverse</topic><topic>Organic light emitting diodes</topic><topic>Simulation</topic><topic>Transition metal oxides</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamwi, Sami</creatorcontrib><creatorcontrib>Meyer, Jens</creatorcontrib><creatorcontrib>Kröger, Michael</creatorcontrib><creatorcontrib>Winkler, Thomas</creatorcontrib><creatorcontrib>Witte, Marco</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Kowalsky, Wolfgang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamwi, Sami</au><au>Meyer, Jens</au><au>Kröger, Michael</au><au>Winkler, Thomas</au><au>Witte, Marco</au><au>Riedl, Thomas</au><au>Kahn, Antoine</au><au>Kowalsky, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2010-06-09</date><risdate>2010</risdate><volume>20</volume><issue>11</issue><spage>1762</spage><epage>1766</epage><pages>1762-1766</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED. Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201000301</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2010-06, Vol.20 (11), p.1762-1766
issn 1616-301X
1616-3028
1616-3028
language eng
recordid cdi_proquest_miscellaneous_880690390
source Wiley Online Library Journals Frontfile Complete
subjects Amines
Charge
charge generation layers
Devices
Inverse
Organic light emitting diodes
Simulation
Transition metal oxides
Tungsten oxides
title The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Transition%20Metal%20Oxides%20in%20Charge-Generation%20Layers%20for%20Stacked%20Organic%20Light-Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Hamwi,%20Sami&rft.date=2010-06-09&rft.volume=20&rft.issue=11&rft.spage=1762&rft.epage=1766&rft.pages=1762-1766&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201000301&rft_dat=%3Cproquest_cross%3E880690390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880690390&rft_id=info:pmid/&rfr_iscdi=true