The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes
The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2010-06, Vol.20 (11), p.1762-1766 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1766 |
---|---|
container_issue | 11 |
container_start_page | 1762 |
container_title | Advanced functional materials |
container_volume | 20 |
creator | Hamwi, Sami Meyer, Jens Kröger, Michael Winkler, Thomas Witte, Marco Riedl, Thomas Kahn, Antoine Kowalsky, Wolfgang |
description | The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.
Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit. |
doi_str_mv | 10.1002/adfm.201000301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880690390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880690390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</originalsourceid><addsrcrecordid>eNqFkE1PAjEURRujiYpuXXfnarCd0s50qSioAUkUP3bNo_MGqsMMtkOEf-8ghrgzecm7i3Pu4hJyxlmbMxZfQJbP2zFrMhOM75EjrriKBIvT_V3mb4fkOIR3xniSiM4RceMZ0seqQFrldOyhDK52VUmHWENBRyuXYaCupN0Z-ClGfSzRww8xgDX6QPPK06ca7AdmdOSnUDpLB246q6ObuatrV07ptaualhNykEMR8PT3t8hz72bcvY0Go_5d93IQWSElj1QHpGSp5RZYmrIk5XGKGMcM9KSToZTaxplWHc3BClQIE6knQkmukzTWOYgWOd_2Lnz1ucRQm7kLFosCSqyWwTSlSjPRXIu0t6T1VQgec7Pwbg5-bTgzm0nNZlKzm7QR9Fb4cgWu_6HN5XVv-NeNtq4LNa52LvgPoxKRSPP60DdX95I_qRdmtPgGzSmI4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880690390</pqid></control><display><type>article</type><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</creator><creatorcontrib>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</creatorcontrib><description>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.
Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</description><identifier>ISSN: 1616-301X</identifier><identifier>ISSN: 1616-3028</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201000301</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amines ; Charge ; charge generation layers ; Devices ; Inverse ; Organic light emitting diodes ; Simulation ; Transition metal oxides ; Tungsten oxides</subject><ispartof>Advanced functional materials, 2010-06, Vol.20 (11), p.1762-1766</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</citedby><cites>FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201000301$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201000301$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hamwi, Sami</creatorcontrib><creatorcontrib>Meyer, Jens</creatorcontrib><creatorcontrib>Kröger, Michael</creatorcontrib><creatorcontrib>Winkler, Thomas</creatorcontrib><creatorcontrib>Witte, Marco</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Kowalsky, Wolfgang</creatorcontrib><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.
Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</description><subject>Amines</subject><subject>Charge</subject><subject>charge generation layers</subject><subject>Devices</subject><subject>Inverse</subject><subject>Organic light emitting diodes</subject><subject>Simulation</subject><subject>Transition metal oxides</subject><subject>Tungsten oxides</subject><issn>1616-301X</issn><issn>1616-3028</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEURRujiYpuXXfnarCd0s50qSioAUkUP3bNo_MGqsMMtkOEf-8ghrgzecm7i3Pu4hJyxlmbMxZfQJbP2zFrMhOM75EjrriKBIvT_V3mb4fkOIR3xniSiM4RceMZ0seqQFrldOyhDK52VUmHWENBRyuXYaCupN0Z-ClGfSzRww8xgDX6QPPK06ca7AdmdOSnUDpLB246q6ObuatrV07ptaualhNykEMR8PT3t8hz72bcvY0Go_5d93IQWSElj1QHpGSp5RZYmrIk5XGKGMcM9KSToZTaxplWHc3BClQIE6knQkmukzTWOYgWOd_2Lnz1ucRQm7kLFosCSqyWwTSlSjPRXIu0t6T1VQgec7Pwbg5-bTgzm0nNZlKzm7QR9Fb4cgWu_6HN5XVv-NeNtq4LNa52LvgPoxKRSPP60DdX95I_qRdmtPgGzSmI4Q</recordid><startdate>20100609</startdate><enddate>20100609</enddate><creator>Hamwi, Sami</creator><creator>Meyer, Jens</creator><creator>Kröger, Michael</creator><creator>Winkler, Thomas</creator><creator>Witte, Marco</creator><creator>Riedl, Thomas</creator><creator>Kahn, Antoine</creator><creator>Kowalsky, Wolfgang</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100609</creationdate><title>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</title><author>Hamwi, Sami ; Meyer, Jens ; Kröger, Michael ; Winkler, Thomas ; Witte, Marco ; Riedl, Thomas ; Kahn, Antoine ; Kowalsky, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3551-64a5508c1ca088078128ee220a9b4de559c2d96491ac3e6eab59b365197829fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amines</topic><topic>Charge</topic><topic>charge generation layers</topic><topic>Devices</topic><topic>Inverse</topic><topic>Organic light emitting diodes</topic><topic>Simulation</topic><topic>Transition metal oxides</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamwi, Sami</creatorcontrib><creatorcontrib>Meyer, Jens</creatorcontrib><creatorcontrib>Kröger, Michael</creatorcontrib><creatorcontrib>Winkler, Thomas</creatorcontrib><creatorcontrib>Witte, Marco</creatorcontrib><creatorcontrib>Riedl, Thomas</creatorcontrib><creatorcontrib>Kahn, Antoine</creatorcontrib><creatorcontrib>Kowalsky, Wolfgang</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamwi, Sami</au><au>Meyer, Jens</au><au>Kröger, Michael</au><au>Winkler, Thomas</au><au>Witte, Marco</au><au>Riedl, Thomas</au><au>Kahn, Antoine</au><au>Kowalsky, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2010-06-09</date><risdate>2010</risdate><volume>20</volume><issue>11</issue><spage>1762</spage><epage>1766</epage><pages>1762-1766</pages><issn>1616-301X</issn><issn>1616-3028</issn><eissn>1616-3028</eissn><abstract>The mechanism of charge generation in transition metal oxide (TMO)‐based charge‐generation layers (CGL) used in stacked organic light‐emitting diodes (OLEDs) is reported upon. An interconnecting unit between two vertically stacked OLEDs, consisting of an abrupt heterointerface between a Cs2CO3‐doped 4,7‐diphenyl‐1,10‐phenanthroline layer and a WO3 film is investigated. Minimum thicknesses are determined for these layers to allow for simultaneous operation of both sub‐OLEDs in the stacked device. Luminance–current density–voltage measurements, angular dependent spectral emission characteristics, and optical device simulations lead to minimum thicknesses of the n‐type doped layer and the TMO layer of 5 and 2.5 nm, respectively. Using data on interface energetic determined by ultraviolet photoelectron and inverse photoemission spectroscopy, it is shown that the actual charge generation occurs between the WO3 layer and its neighboring hole‐transport material, 4,4',4”‐tris(N‐carbazolyl)‐triphenyl amine. The role of the adjacent n‐type doped electron transport layer is only to facilitate electron injection from the TMO into the adjacent sub‐OLED.
Charge generation in transition metal oxide (TMO)‐based interconnecting units of stacked organic light‐emitting diodes occurs between the WO3 layer and its neighboring hole‐transport material TCTA. The role of the adjacent n‐type doped electron‐transport layer BPhen:Cs2CO3 is only to facilitate electron injection from the TMO into the adjacent organic light‐emitting unit.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201000301</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2010-06, Vol.20 (11), p.1762-1766 |
issn | 1616-301X 1616-3028 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_880690390 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Amines Charge charge generation layers Devices Inverse Organic light emitting diodes Simulation Transition metal oxides Tungsten oxides |
title | The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Transition%20Metal%20Oxides%20in%20Charge-Generation%20Layers%20for%20Stacked%20Organic%20Light-Emitting%20Diodes&rft.jtitle=Advanced%20functional%20materials&rft.au=Hamwi,%20Sami&rft.date=2010-06-09&rft.volume=20&rft.issue=11&rft.spage=1762&rft.epage=1766&rft.pages=1762-1766&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201000301&rft_dat=%3Cproquest_cross%3E880690390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880690390&rft_id=info:pmid/&rfr_iscdi=true |