Graph quantization

► Extends vector quantazation to the quantization of graphs. ► Proves the Lloyd-Max conditions for optimality of graph quantization. ► Provides consistency statements for optimal graph quantizer design. ► Presents an accelerated version of competitive learning graph quantization. Vector quantization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2011-07, Vol.115 (7), p.946-961
Hauptverfasser: Jain, Brijnesh J., Obermayer, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 7
container_start_page 946
container_title Computer vision and image understanding
container_volume 115
creator Jain, Brijnesh J.
Obermayer, Klaus
description ► Extends vector quantazation to the quantization of graphs. ► Proves the Lloyd-Max conditions for optimality of graph quantization. ► Provides consistency statements for optimal graph quantizer design. ► Presents an accelerated version of competitive learning graph quantization. Vector quantization (VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution aims at extending VQ to the quantization of graphs in a theoretically principled way in order to overcome practical limitations known in the context of prototype-based clustering of graphs. For this, we present the following results: (i) A proof of the necessary Lloyd-Max conditions for optimality of a graph quantizer, (ii) consistency statements for optimal graph quantizer design, and (iii) an accelerated version of competitive learning graph quantization. In order to achieve the proposed results, we present graphs as points in some orbifold. The orbifold framework will introduce sufficient mathematical structure to allow an extension of VQ to graph quantization in a theoretically sound way without discarding the relational information of the graphs. In doing so the proposed approach provides a template of how to link structural pattern recognition methods other than graph quantization to statistical pattern recognition.
doi_str_mv 10.1016/j.cviu.2011.03.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880682092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314211000920</els_id><sourcerecordid>880682092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-b6b6fac188981769a47cf50a4c708fb0814f2b4d9f6f910497d820d5f14f71fe3</originalsourceid><addsrcrecordid>eNp9j0FLwzAUgIMoOKcXj568eWp9L0mbBLzI0CkMvCh4C2maYMbWbkk70F9vyjx7eo_H9z34CLlBKBGwvl-X9hDGkgJiCawE4CdkhqCgoKz6PJ12IQqGnJ6Ti5TWkEGucEaul9Hsvm73o-mG8GOG0HeX5MybTXJXf3NOPp6f3hcvxept-bp4XBWWMToUTd3U3liUUkkUtTJcWF-B4VaA9A1I5J42vFW-9gqBK9FKCm3l812gd2xO7o5_d7Hfjy4NehuSdZuN6Vw_Ji0l1NlQNJP0SNrYpxSd17sYtiZ-awQ99eu1nvr11K-B6dyfpYej5HLDIbiokw2us64N0dlBt334T_8F1jJiAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880682092</pqid></control><display><type>article</type><title>Graph quantization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jain, Brijnesh J. ; Obermayer, Klaus</creator><creatorcontrib>Jain, Brijnesh J. ; Obermayer, Klaus</creatorcontrib><description>► Extends vector quantazation to the quantization of graphs. ► Proves the Lloyd-Max conditions for optimality of graph quantization. ► Provides consistency statements for optimal graph quantizer design. ► Presents an accelerated version of competitive learning graph quantization. Vector quantization (VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution aims at extending VQ to the quantization of graphs in a theoretically principled way in order to overcome practical limitations known in the context of prototype-based clustering of graphs. For this, we present the following results: (i) A proof of the necessary Lloyd-Max conditions for optimality of a graph quantizer, (ii) consistency statements for optimal graph quantizer design, and (iii) an accelerated version of competitive learning graph quantization. In order to achieve the proposed results, we present graphs as points in some orbifold. The orbifold framework will introduce sufficient mathematical structure to allow an extension of VQ to graph quantization in a theoretically sound way without discarding the relational information of the graphs. In doing so the proposed approach provides a template of how to link structural pattern recognition methods other than graph quantization to statistical pattern recognition.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2011.03.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Clustering ; Combinatorial analysis ; Competitive learning ; Consistent estimators ; Counters ; Graph matching ; Graphs ; k-means ; Mathematical analysis ; Mathematical models ; Orbifolds ; Pattern recognition ; Quantization ; Quantization of graphs</subject><ispartof>Computer vision and image understanding, 2011-07, Vol.115 (7), p.946-961</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-b6b6fac188981769a47cf50a4c708fb0814f2b4d9f6f910497d820d5f14f71fe3</citedby><cites>FETCH-LOGICAL-c332t-b6b6fac188981769a47cf50a4c708fb0814f2b4d9f6f910497d820d5f14f71fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cviu.2011.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Jain, Brijnesh J.</creatorcontrib><creatorcontrib>Obermayer, Klaus</creatorcontrib><title>Graph quantization</title><title>Computer vision and image understanding</title><description>► Extends vector quantazation to the quantization of graphs. ► Proves the Lloyd-Max conditions for optimality of graph quantization. ► Provides consistency statements for optimal graph quantizer design. ► Presents an accelerated version of competitive learning graph quantization. Vector quantization (VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution aims at extending VQ to the quantization of graphs in a theoretically principled way in order to overcome practical limitations known in the context of prototype-based clustering of graphs. For this, we present the following results: (i) A proof of the necessary Lloyd-Max conditions for optimality of a graph quantizer, (ii) consistency statements for optimal graph quantizer design, and (iii) an accelerated version of competitive learning graph quantization. In order to achieve the proposed results, we present graphs as points in some orbifold. The orbifold framework will introduce sufficient mathematical structure to allow an extension of VQ to graph quantization in a theoretically sound way without discarding the relational information of the graphs. In doing so the proposed approach provides a template of how to link structural pattern recognition methods other than graph quantization to statistical pattern recognition.</description><subject>Clustering</subject><subject>Combinatorial analysis</subject><subject>Competitive learning</subject><subject>Consistent estimators</subject><subject>Counters</subject><subject>Graph matching</subject><subject>Graphs</subject><subject>k-means</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Orbifolds</subject><subject>Pattern recognition</subject><subject>Quantization</subject><subject>Quantization of graphs</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAUgIMoOKcXj568eWp9L0mbBLzI0CkMvCh4C2maYMbWbkk70F9vyjx7eo_H9z34CLlBKBGwvl-X9hDGkgJiCawE4CdkhqCgoKz6PJ12IQqGnJ6Ti5TWkEGucEaul9Hsvm73o-mG8GOG0HeX5MybTXJXf3NOPp6f3hcvxept-bp4XBWWMToUTd3U3liUUkkUtTJcWF-B4VaA9A1I5J42vFW-9gqBK9FKCm3l812gd2xO7o5_d7Hfjy4NehuSdZuN6Vw_Ji0l1NlQNJP0SNrYpxSd17sYtiZ-awQ99eu1nvr11K-B6dyfpYej5HLDIbiokw2us64N0dlBt334T_8F1jJiAA</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Jain, Brijnesh J.</creator><creator>Obermayer, Klaus</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Graph quantization</title><author>Jain, Brijnesh J. ; Obermayer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-b6b6fac188981769a47cf50a4c708fb0814f2b4d9f6f910497d820d5f14f71fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clustering</topic><topic>Combinatorial analysis</topic><topic>Competitive learning</topic><topic>Consistent estimators</topic><topic>Counters</topic><topic>Graph matching</topic><topic>Graphs</topic><topic>k-means</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Orbifolds</topic><topic>Pattern recognition</topic><topic>Quantization</topic><topic>Quantization of graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Brijnesh J.</creatorcontrib><creatorcontrib>Obermayer, Klaus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Brijnesh J.</au><au>Obermayer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph quantization</atitle><jtitle>Computer vision and image understanding</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>115</volume><issue>7</issue><spage>946</spage><epage>961</epage><pages>946-961</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>► Extends vector quantazation to the quantization of graphs. ► Proves the Lloyd-Max conditions for optimality of graph quantization. ► Provides consistency statements for optimal graph quantizer design. ► Presents an accelerated version of competitive learning graph quantization. Vector quantization (VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution aims at extending VQ to the quantization of graphs in a theoretically principled way in order to overcome practical limitations known in the context of prototype-based clustering of graphs. For this, we present the following results: (i) A proof of the necessary Lloyd-Max conditions for optimality of a graph quantizer, (ii) consistency statements for optimal graph quantizer design, and (iii) an accelerated version of competitive learning graph quantization. In order to achieve the proposed results, we present graphs as points in some orbifold. The orbifold framework will introduce sufficient mathematical structure to allow an extension of VQ to graph quantization in a theoretically sound way without discarding the relational information of the graphs. In doing so the proposed approach provides a template of how to link structural pattern recognition methods other than graph quantization to statistical pattern recognition.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2011.03.004</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2011-07, Vol.115 (7), p.946-961
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_880682092
source Access via ScienceDirect (Elsevier)
subjects Clustering
Combinatorial analysis
Competitive learning
Consistent estimators
Counters
Graph matching
Graphs
k-means
Mathematical analysis
Mathematical models
Orbifolds
Pattern recognition
Quantization
Quantization of graphs
title Graph quantization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20quantization&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Jain,%20Brijnesh%20J.&rft.date=2011-07-01&rft.volume=115&rft.issue=7&rft.spage=946&rft.epage=961&rft.pages=946-961&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2011.03.004&rft_dat=%3Cproquest_cross%3E880682092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880682092&rft_id=info:pmid/&rft_els_id=S1077314211000920&rfr_iscdi=true