Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna
Plasmonic devices are capable of efficiently confining and enhancing optical fields, serving as a bridge between the realm of diffraction-limited optics and the nanoscale. Specifically, a plasmonic device can be used to locally heat a recording medium for data storage. Ideally, the recording medium...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2010-07, Vol.4 (7), p.484-488 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 488 |
---|---|
container_issue | 7 |
container_start_page | 484 |
container_title | Nature photonics |
container_volume | 4 |
creator | Stipe, Barry C Strand, Timothy C Poon, Chie C Balamane, Hamid Boone, Thomas D Katine, Jordan A Li, Jui-Lung Rawat, Vijay Nemoto, Hiroaki Hirotsune, Akemi Hellwig, Olav Ruiz, Ricardo Dobisz, Elizabeth Kercher, Dan S Robertson, Neil Albrecht, Thomas R Terris, Bruce D |
description | Plasmonic devices are capable of efficiently confining and enhancing optical fields, serving as a bridge between the realm of diffraction-limited optics and the nanoscale. Specifically, a plasmonic device can be used to locally heat a recording medium for data storage. Ideally, the recording medium would consist of individually addressable and non-interacting entities, a configuration that has been regarded as the ultimate future hard-drive technology. Here, we describe a plasmonic nano-antenna that is fully integrated into a magnetic recording head and its use for thermally assisted magnetic recording on both continuous and fully-ordered patterned media using nanosecond pulses in a static tester configuration. In the case of patterned media at 1.5Pbm super(-2) ( similar to 1Tbinch super(-2)) with 24-nm track pitch, we show ideally written bits without disturbing neighbouring tracks. We find a dramatic improvement in track width and optical efficiency compared to continuous media and show that this is largely due to advantageous near-field optical effects. |
doi_str_mv | 10.1038/nphoton.2010.90 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_880677663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880677663</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_8806776633</originalsourceid><addsrcrecordid>eNqNizsPgjAURjto4nN27aYOYHmX2WgcNHFwJxWuiIHb2lv-v8T4A5xOcs73MbYKhB-ISO7QPLXT6IdiMLkYsWmQxbkXS5lM2IzoJUQS5WE4ZeeLqhFcU3ILpbZVgzVXjgd-cr13nHoDduOFW97TtyBv0EFtlYOKm1ZRp3H4qkEiqgUbP1RLsPxxztbHw21_8ozV7x7IFV1DJbStQtA9FVKKNMvSNIr-X34Al4FFyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880677663</pqid></control><display><type>article</type><title>Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stipe, Barry C ; Strand, Timothy C ; Poon, Chie C ; Balamane, Hamid ; Boone, Thomas D ; Katine, Jordan A ; Li, Jui-Lung ; Rawat, Vijay ; Nemoto, Hiroaki ; Hirotsune, Akemi ; Hellwig, Olav ; Ruiz, Ricardo ; Dobisz, Elizabeth ; Kercher, Dan S ; Robertson, Neil ; Albrecht, Thomas R ; Terris, Bruce D</creator><creatorcontrib>Stipe, Barry C ; Strand, Timothy C ; Poon, Chie C ; Balamane, Hamid ; Boone, Thomas D ; Katine, Jordan A ; Li, Jui-Lung ; Rawat, Vijay ; Nemoto, Hiroaki ; Hirotsune, Akemi ; Hellwig, Olav ; Ruiz, Ricardo ; Dobisz, Elizabeth ; Kercher, Dan S ; Robertson, Neil ; Albrecht, Thomas R ; Terris, Bruce D</creatorcontrib><description>Plasmonic devices are capable of efficiently confining and enhancing optical fields, serving as a bridge between the realm of diffraction-limited optics and the nanoscale. Specifically, a plasmonic device can be used to locally heat a recording medium for data storage. Ideally, the recording medium would consist of individually addressable and non-interacting entities, a configuration that has been regarded as the ultimate future hard-drive technology. Here, we describe a plasmonic nano-antenna that is fully integrated into a magnetic recording head and its use for thermally assisted magnetic recording on both continuous and fully-ordered patterned media using nanosecond pulses in a static tester configuration. In the case of patterned media at 1.5Pbm super(-2) ( similar to 1Tbinch super(-2)) with 24-nm track pitch, we show ideally written bits without disturbing neighbouring tracks. We find a dramatic improvement in track width and optical efficiency compared to continuous media and show that this is largely due to advantageous near-field optical effects.</description><identifier>ISSN: 1749-4885</identifier><identifier>DOI: 10.1038/nphoton.2010.90</identifier><language>eng</language><subject>Devices ; Magnetic recording ; Media ; Nanocomposites ; Nanomaterials ; Nanostructure ; Plasmonics ; Recording</subject><ispartof>Nature photonics, 2010-07, Vol.4 (7), p.484-488</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Stipe, Barry C</creatorcontrib><creatorcontrib>Strand, Timothy C</creatorcontrib><creatorcontrib>Poon, Chie C</creatorcontrib><creatorcontrib>Balamane, Hamid</creatorcontrib><creatorcontrib>Boone, Thomas D</creatorcontrib><creatorcontrib>Katine, Jordan A</creatorcontrib><creatorcontrib>Li, Jui-Lung</creatorcontrib><creatorcontrib>Rawat, Vijay</creatorcontrib><creatorcontrib>Nemoto, Hiroaki</creatorcontrib><creatorcontrib>Hirotsune, Akemi</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Ruiz, Ricardo</creatorcontrib><creatorcontrib>Dobisz, Elizabeth</creatorcontrib><creatorcontrib>Kercher, Dan S</creatorcontrib><creatorcontrib>Robertson, Neil</creatorcontrib><creatorcontrib>Albrecht, Thomas R</creatorcontrib><creatorcontrib>Terris, Bruce D</creatorcontrib><title>Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna</title><title>Nature photonics</title><description>Plasmonic devices are capable of efficiently confining and enhancing optical fields, serving as a bridge between the realm of diffraction-limited optics and the nanoscale. Specifically, a plasmonic device can be used to locally heat a recording medium for data storage. Ideally, the recording medium would consist of individually addressable and non-interacting entities, a configuration that has been regarded as the ultimate future hard-drive technology. Here, we describe a plasmonic nano-antenna that is fully integrated into a magnetic recording head and its use for thermally assisted magnetic recording on both continuous and fully-ordered patterned media using nanosecond pulses in a static tester configuration. In the case of patterned media at 1.5Pbm super(-2) ( similar to 1Tbinch super(-2)) with 24-nm track pitch, we show ideally written bits without disturbing neighbouring tracks. We find a dramatic improvement in track width and optical efficiency compared to continuous media and show that this is largely due to advantageous near-field optical effects.</description><subject>Devices</subject><subject>Magnetic recording</subject><subject>Media</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Plasmonics</subject><subject>Recording</subject><issn>1749-4885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNizsPgjAURjto4nN27aYOYHmX2WgcNHFwJxWuiIHb2lv-v8T4A5xOcs73MbYKhB-ISO7QPLXT6IdiMLkYsWmQxbkXS5lM2IzoJUQS5WE4ZeeLqhFcU3ILpbZVgzVXjgd-cr13nHoDduOFW97TtyBv0EFtlYOKm1ZRp3H4qkEiqgUbP1RLsPxxztbHw21_8ozV7x7IFV1DJbStQtA9FVKKNMvSNIr-X34Al4FFyA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Stipe, Barry C</creator><creator>Strand, Timothy C</creator><creator>Poon, Chie C</creator><creator>Balamane, Hamid</creator><creator>Boone, Thomas D</creator><creator>Katine, Jordan A</creator><creator>Li, Jui-Lung</creator><creator>Rawat, Vijay</creator><creator>Nemoto, Hiroaki</creator><creator>Hirotsune, Akemi</creator><creator>Hellwig, Olav</creator><creator>Ruiz, Ricardo</creator><creator>Dobisz, Elizabeth</creator><creator>Kercher, Dan S</creator><creator>Robertson, Neil</creator><creator>Albrecht, Thomas R</creator><creator>Terris, Bruce D</creator><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna</title><author>Stipe, Barry C ; Strand, Timothy C ; Poon, Chie C ; Balamane, Hamid ; Boone, Thomas D ; Katine, Jordan A ; Li, Jui-Lung ; Rawat, Vijay ; Nemoto, Hiroaki ; Hirotsune, Akemi ; Hellwig, Olav ; Ruiz, Ricardo ; Dobisz, Elizabeth ; Kercher, Dan S ; Robertson, Neil ; Albrecht, Thomas R ; Terris, Bruce D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_8806776633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Devices</topic><topic>Magnetic recording</topic><topic>Media</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Plasmonics</topic><topic>Recording</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stipe, Barry C</creatorcontrib><creatorcontrib>Strand, Timothy C</creatorcontrib><creatorcontrib>Poon, Chie C</creatorcontrib><creatorcontrib>Balamane, Hamid</creatorcontrib><creatorcontrib>Boone, Thomas D</creatorcontrib><creatorcontrib>Katine, Jordan A</creatorcontrib><creatorcontrib>Li, Jui-Lung</creatorcontrib><creatorcontrib>Rawat, Vijay</creatorcontrib><creatorcontrib>Nemoto, Hiroaki</creatorcontrib><creatorcontrib>Hirotsune, Akemi</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Ruiz, Ricardo</creatorcontrib><creatorcontrib>Dobisz, Elizabeth</creatorcontrib><creatorcontrib>Kercher, Dan S</creatorcontrib><creatorcontrib>Robertson, Neil</creatorcontrib><creatorcontrib>Albrecht, Thomas R</creatorcontrib><creatorcontrib>Terris, Bruce D</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stipe, Barry C</au><au>Strand, Timothy C</au><au>Poon, Chie C</au><au>Balamane, Hamid</au><au>Boone, Thomas D</au><au>Katine, Jordan A</au><au>Li, Jui-Lung</au><au>Rawat, Vijay</au><au>Nemoto, Hiroaki</au><au>Hirotsune, Akemi</au><au>Hellwig, Olav</au><au>Ruiz, Ricardo</au><au>Dobisz, Elizabeth</au><au>Kercher, Dan S</au><au>Robertson, Neil</au><au>Albrecht, Thomas R</au><au>Terris, Bruce D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna</atitle><jtitle>Nature photonics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>4</volume><issue>7</issue><spage>484</spage><epage>488</epage><pages>484-488</pages><issn>1749-4885</issn><abstract>Plasmonic devices are capable of efficiently confining and enhancing optical fields, serving as a bridge between the realm of diffraction-limited optics and the nanoscale. Specifically, a plasmonic device can be used to locally heat a recording medium for data storage. Ideally, the recording medium would consist of individually addressable and non-interacting entities, a configuration that has been regarded as the ultimate future hard-drive technology. Here, we describe a plasmonic nano-antenna that is fully integrated into a magnetic recording head and its use for thermally assisted magnetic recording on both continuous and fully-ordered patterned media using nanosecond pulses in a static tester configuration. In the case of patterned media at 1.5Pbm super(-2) ( similar to 1Tbinch super(-2)) with 24-nm track pitch, we show ideally written bits without disturbing neighbouring tracks. We find a dramatic improvement in track width and optical efficiency compared to continuous media and show that this is largely due to advantageous near-field optical effects.</abstract><doi>10.1038/nphoton.2010.90</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2010-07, Vol.4 (7), p.484-488 |
issn | 1749-4885 |
language | eng |
recordid | cdi_proquest_miscellaneous_880677663 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Devices Magnetic recording Media Nanocomposites Nanomaterials Nanostructure Plasmonics Recording |
title | Magnetic recording at 1.5Pbm super(-2) using an integrated plasmonic antenna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20recording%20at%201.5Pbm%20super(-2)%20using%20an%20integrated%20plasmonic%20antenna&rft.jtitle=Nature%20photonics&rft.au=Stipe,%20Barry%20C&rft.date=2010-07-01&rft.volume=4&rft.issue=7&rft.spage=484&rft.epage=488&rft.pages=484-488&rft.issn=1749-4885&rft_id=info:doi/10.1038/nphoton.2010.90&rft_dat=%3Cproquest%3E880677663%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880677663&rft_id=info:pmid/&rfr_iscdi=true |