Bottom-up realization of a porous metal-organic nanotubular assembly
Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic mole...
Gespeichert in:
Veröffentlicht in: | Nature materials 2011-04, Vol.10 (4), p.291-295 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 4 |
container_start_page | 291 |
container_title | Nature materials |
container_volume | 10 |
creator | Otsubo, Kazuya Kitagawa, Hiroshi Wakabayashi, Yusuke Ohara, Jun Yamamoto, Shoji Matsuzaki, Hiroyuki Okamoto, Hiroshi Nitta, Kiyofumi Uruga, Tomoya |
description | Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used. |
doi_str_mv | 10.1038/nmat2963 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880675884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300382101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgijNewCeQ4kZdVJOmTZOljlcYcKPrcto5HTq0yZjLYnx6I3MRBFcncD7-HH5Czhi9YZTLWz2Az5Tge2TM8lKkuRB0f_NmLMtG5Mi5BaUZKwpxSEYZ44UUuRqTh3vjvRnSsEwsQt99ge-MTkybQLI01gSXDOihT42dg-6aRIM2PtShB5uAczjU_eqEHLTQOzzdzGPy8fT4PnlJp2_Pr5O7adrkIvdpK5SElqPkTSlKSmkODGCGrSqRo8ixzmZcIWdMgVRCtLzIGHKJAMC5EPyYXK5zl9Z8BnS-GjrXYN-DxnhpJSUVZSFlHuXFH7kwwep4XCULGatiKovoao0aa5yz2FZL2w1gVxWj1U-v1bbXSM83eaEecLaD2yIjuF4DF1d6jvb3w__DNPhgcRe2A99d1ou8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858296192</pqid></control><display><type>article</type><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</creator><creatorcontrib>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</creatorcontrib><description>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2963</identifier><identifier>PMID: 21358649</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/301/299/1013 ; 639/301/357 ; Assembly ; Biomaterials ; Carbon dioxide ; Channels ; Chemical elements ; Chemistry and Materials Science ; Condensed Matter Physics ; Constituents ; Crystallization ; High temperature ; letter ; Materials Science ; Metal ions ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nanotubes ; Optical and Electronic Materials ; Polymerization ; Porous materials</subject><ispartof>Nature materials, 2011-04, Vol.10 (4), p.291-295</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</citedby><cites>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21358649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Otsubo, Kazuya</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ohara, Jun</creatorcontrib><creatorcontrib>Yamamoto, Shoji</creatorcontrib><creatorcontrib>Matsuzaki, Hiroyuki</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Nitta, Kiyofumi</creatorcontrib><creatorcontrib>Uruga, Tomoya</creatorcontrib><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</description><subject>639/301/1034/1038</subject><subject>639/301/299/1013</subject><subject>639/301/357</subject><subject>Assembly</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Channels</subject><subject>Chemical elements</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Constituents</subject><subject>Crystallization</subject><subject>High temperature</subject><subject>letter</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical and Electronic Materials</subject><subject>Polymerization</subject><subject>Porous materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10MtKxDAUBuAgijNewCeQ4kZdVJOmTZOljlcYcKPrcto5HTq0yZjLYnx6I3MRBFcncD7-HH5Czhi9YZTLWz2Az5Tge2TM8lKkuRB0f_NmLMtG5Mi5BaUZKwpxSEYZ44UUuRqTh3vjvRnSsEwsQt99ge-MTkybQLI01gSXDOihT42dg-6aRIM2PtShB5uAczjU_eqEHLTQOzzdzGPy8fT4PnlJp2_Pr5O7adrkIvdpK5SElqPkTSlKSmkODGCGrSqRo8ixzmZcIWdMgVRCtLzIGHKJAMC5EPyYXK5zl9Z8BnS-GjrXYN-DxnhpJSUVZSFlHuXFH7kwwep4XCULGatiKovoao0aa5yz2FZL2w1gVxWj1U-v1bbXSM83eaEecLaD2yIjuF4DF1d6jvb3w__DNPhgcRe2A99d1ou8</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Otsubo, Kazuya</creator><creator>Kitagawa, Hiroshi</creator><creator>Wakabayashi, Yusuke</creator><creator>Ohara, Jun</creator><creator>Yamamoto, Shoji</creator><creator>Matsuzaki, Hiroyuki</creator><creator>Okamoto, Hiroshi</creator><creator>Nitta, Kiyofumi</creator><creator>Uruga, Tomoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><author>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/1034/1038</topic><topic>639/301/299/1013</topic><topic>639/301/357</topic><topic>Assembly</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Channels</topic><topic>Chemical elements</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Constituents</topic><topic>Crystallization</topic><topic>High temperature</topic><topic>letter</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical and Electronic Materials</topic><topic>Polymerization</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otsubo, Kazuya</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ohara, Jun</creatorcontrib><creatorcontrib>Yamamoto, Shoji</creatorcontrib><creatorcontrib>Matsuzaki, Hiroyuki</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Nitta, Kiyofumi</creatorcontrib><creatorcontrib>Uruga, Tomoya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otsubo, Kazuya</au><au>Kitagawa, Hiroshi</au><au>Wakabayashi, Yusuke</au><au>Ohara, Jun</au><au>Yamamoto, Shoji</au><au>Matsuzaki, Hiroyuki</au><au>Okamoto, Hiroshi</au><au>Nitta, Kiyofumi</au><au>Uruga, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-up realization of a porous metal-organic nanotubular assembly</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>10</volume><issue>4</issue><spage>291</spage><epage>295</epage><pages>291-295</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21358649</pmid><doi>10.1038/nmat2963</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2011-04, Vol.10 (4), p.291-295 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_880675884 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/1034/1038 639/301/299/1013 639/301/357 Assembly Biomaterials Carbon dioxide Channels Chemical elements Chemistry and Materials Science Condensed Matter Physics Constituents Crystallization High temperature letter Materials Science Metal ions Nanocomposites Nanomaterials Nanostructure Nanotechnology Nanotubes Optical and Electronic Materials Polymerization Porous materials |
title | Bottom-up realization of a porous metal-organic nanotubular assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-up%20realization%20of%20a%20porous%20metal-organic%20nanotubular%20assembly&rft.jtitle=Nature%20materials&rft.au=Otsubo,%20Kazuya&rft.date=2011-04-01&rft.volume=10&rft.issue=4&rft.spage=291&rft.epage=295&rft.pages=291-295&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2963&rft_dat=%3Cproquest_cross%3E2300382101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858296192&rft_id=info:pmid/21358649&rfr_iscdi=true |