Bottom-up realization of a porous metal-organic nanotubular assembly

Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2011-04, Vol.10 (4), p.291-295
Hauptverfasser: Otsubo, Kazuya, Kitagawa, Hiroshi, Wakabayashi, Yusuke, Ohara, Jun, Yamamoto, Shoji, Matsuzaki, Hiroyuki, Okamoto, Hiroshi, Nitta, Kiyofumi, Uruga, Tomoya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 4
container_start_page 291
container_title Nature materials
container_volume 10
creator Otsubo, Kazuya
Kitagawa, Hiroshi
Wakabayashi, Yusuke
Ohara, Jun
Yamamoto, Shoji
Matsuzaki, Hiroyuki
Okamoto, Hiroshi
Nitta, Kiyofumi
Uruga, Tomoya
description Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.
doi_str_mv 10.1038/nmat2963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880675884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2300382101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgijNewCeQ4kZdVJOmTZOljlcYcKPrcto5HTq0yZjLYnx6I3MRBFcncD7-HH5Czhi9YZTLWz2Az5Tge2TM8lKkuRB0f_NmLMtG5Mi5BaUZKwpxSEYZ44UUuRqTh3vjvRnSsEwsQt99ge-MTkybQLI01gSXDOihT42dg-6aRIM2PtShB5uAczjU_eqEHLTQOzzdzGPy8fT4PnlJp2_Pr5O7adrkIvdpK5SElqPkTSlKSmkODGCGrSqRo8ixzmZcIWdMgVRCtLzIGHKJAMC5EPyYXK5zl9Z8BnS-GjrXYN-DxnhpJSUVZSFlHuXFH7kwwep4XCULGatiKovoao0aa5yz2FZL2w1gVxWj1U-v1bbXSM83eaEecLaD2yIjuF4DF1d6jvb3w__DNPhgcRe2A99d1ou8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858296192</pqid></control><display><type>article</type><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</creator><creatorcontrib>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</creatorcontrib><description>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2963</identifier><identifier>PMID: 21358649</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1038 ; 639/301/299/1013 ; 639/301/357 ; Assembly ; Biomaterials ; Carbon dioxide ; Channels ; Chemical elements ; Chemistry and Materials Science ; Condensed Matter Physics ; Constituents ; Crystallization ; High temperature ; letter ; Materials Science ; Metal ions ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Nanotubes ; Optical and Electronic Materials ; Polymerization ; Porous materials</subject><ispartof>Nature materials, 2011-04, Vol.10 (4), p.291-295</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</citedby><cites>FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21358649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Otsubo, Kazuya</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ohara, Jun</creatorcontrib><creatorcontrib>Yamamoto, Shoji</creatorcontrib><creatorcontrib>Matsuzaki, Hiroyuki</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Nitta, Kiyofumi</creatorcontrib><creatorcontrib>Uruga, Tomoya</creatorcontrib><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</description><subject>639/301/1034/1038</subject><subject>639/301/299/1013</subject><subject>639/301/357</subject><subject>Assembly</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Channels</subject><subject>Chemical elements</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Constituents</subject><subject>Crystallization</subject><subject>High temperature</subject><subject>letter</subject><subject>Materials Science</subject><subject>Metal ions</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optical and Electronic Materials</subject><subject>Polymerization</subject><subject>Porous materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10MtKxDAUBuAgijNewCeQ4kZdVJOmTZOljlcYcKPrcto5HTq0yZjLYnx6I3MRBFcncD7-HH5Czhi9YZTLWz2Az5Tge2TM8lKkuRB0f_NmLMtG5Mi5BaUZKwpxSEYZ44UUuRqTh3vjvRnSsEwsQt99ge-MTkybQLI01gSXDOihT42dg-6aRIM2PtShB5uAczjU_eqEHLTQOzzdzGPy8fT4PnlJp2_Pr5O7adrkIvdpK5SElqPkTSlKSmkODGCGrSqRo8ixzmZcIWdMgVRCtLzIGHKJAMC5EPyYXK5zl9Z8BnS-GjrXYN-DxnhpJSUVZSFlHuXFH7kwwep4XCULGatiKovoao0aa5yz2FZL2w1gVxWj1U-v1bbXSM83eaEecLaD2yIjuF4DF1d6jvb3w__DNPhgcRe2A99d1ou8</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Otsubo, Kazuya</creator><creator>Kitagawa, Hiroshi</creator><creator>Wakabayashi, Yusuke</creator><creator>Ohara, Jun</creator><creator>Yamamoto, Shoji</creator><creator>Matsuzaki, Hiroyuki</creator><creator>Okamoto, Hiroshi</creator><creator>Nitta, Kiyofumi</creator><creator>Uruga, Tomoya</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20110401</creationdate><title>Bottom-up realization of a porous metal-organic nanotubular assembly</title><author>Otsubo, Kazuya ; Kitagawa, Hiroshi ; Wakabayashi, Yusuke ; Ohara, Jun ; Yamamoto, Shoji ; Matsuzaki, Hiroyuki ; Okamoto, Hiroshi ; Nitta, Kiyofumi ; Uruga, Tomoya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f698af3e83c7670004a1aadef97e3e64eb2d39e3119a8966f3521e38eaaa33663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/1034/1038</topic><topic>639/301/299/1013</topic><topic>639/301/357</topic><topic>Assembly</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Channels</topic><topic>Chemical elements</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Constituents</topic><topic>Crystallization</topic><topic>High temperature</topic><topic>letter</topic><topic>Materials Science</topic><topic>Metal ions</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optical and Electronic Materials</topic><topic>Polymerization</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otsubo, Kazuya</creatorcontrib><creatorcontrib>Kitagawa, Hiroshi</creatorcontrib><creatorcontrib>Wakabayashi, Yusuke</creatorcontrib><creatorcontrib>Ohara, Jun</creatorcontrib><creatorcontrib>Yamamoto, Shoji</creatorcontrib><creatorcontrib>Matsuzaki, Hiroyuki</creatorcontrib><creatorcontrib>Okamoto, Hiroshi</creatorcontrib><creatorcontrib>Nitta, Kiyofumi</creatorcontrib><creatorcontrib>Uruga, Tomoya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otsubo, Kazuya</au><au>Kitagawa, Hiroshi</au><au>Wakabayashi, Yusuke</au><au>Ohara, Jun</au><au>Yamamoto, Shoji</au><au>Matsuzaki, Hiroyuki</au><au>Okamoto, Hiroshi</au><au>Nitta, Kiyofumi</au><au>Uruga, Tomoya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottom-up realization of a porous metal-organic nanotubular assembly</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>10</volume><issue>4</issue><spage>291</spage><epage>295</epage><pages>291-295</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Nanotubes are generally prepared from their constituent elements at high temperatures, and thus it is difficult to control their size, shape and electronic states. One useful approach for synthesizing well-defined nanostructures involves the use of building blocks such as metal ions and organic molecules. Here, we show the successful creation of an assembly of infinite square prism-shaped metal-organic nanotubes obtained from the simple polymerization of a square-shaped metal-organic frame. The constituent nanotube has a one-dimensional (1D) channel with a window size of 5.9×5.9 Å2, and can adsorb water (H2O) and alcohol vapours, whereas N2 and CO2 do not adhere. It consists of four 1D covalent chains that constitute a unique electronic structure of 'charge-density wave (CDW) quartets' on crystallization. Moreover, exchanging structural components and guest molecules enables us to control its semiconductive bandgap. These findings demonstrate the possibility of bottom-up construction of new porous nanotubes, where their degrees of freedom in both pore space and framework can be used.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21358649</pmid><doi>10.1038/nmat2963</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2011-04, Vol.10 (4), p.291-295
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_880675884
source Nature; Alma/SFX Local Collection
subjects 639/301/1034/1038
639/301/299/1013
639/301/357
Assembly
Biomaterials
Carbon dioxide
Channels
Chemical elements
Chemistry and Materials Science
Condensed Matter Physics
Constituents
Crystallization
High temperature
letter
Materials Science
Metal ions
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Nanotubes
Optical and Electronic Materials
Polymerization
Porous materials
title Bottom-up realization of a porous metal-organic nanotubular assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottom-up%20realization%20of%20a%20porous%20metal-organic%20nanotubular%20assembly&rft.jtitle=Nature%20materials&rft.au=Otsubo,%20Kazuya&rft.date=2011-04-01&rft.volume=10&rft.issue=4&rft.spage=291&rft.epage=295&rft.pages=291-295&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2963&rft_dat=%3Cproquest_cross%3E2300382101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858296192&rft_id=info:pmid/21358649&rfr_iscdi=true