Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions
A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2007-04, Vol.43 (4), p.1153-1156 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1156 |
---|---|
container_issue | 4 |
container_start_page | 1153 |
container_title | IEEE transactions on magnetics |
container_volume | 43 |
creator | Selvaggi, J.P. Salon, S. Kwon, O.-M. Chari, M.V.K. DeBortoli, M. |
description | A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion which is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. Also, one can compute an equivalent multipole distribution of the real magnetic source valid for points close to the circular cylindrical boundary where the more familiar spherical multipole distribution is not valid. This method can also be used to accurately compute the far field where a finite-element formulation is known to be inaccurate |
doi_str_mv | 10.1109/TMAG.2007.892275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880674416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4137806</ieee_id><sourcerecordid>880674416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ad124811b6a0e21f62408b3f72974035896b1ba120992af7e6c81b3dd2861a703</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1EJZbCHYmLhQRcmmXGdhz7WEVNQerHge05chynuMrGi51I7U_gX-Nly4c49DQzmmdee-Yl5A3CGhH0p83l6fmaAVRrpRmrymdkhVpgASD1c7ICQFVoIcUL8jKlu1yKEmFFftRhu1tmM_sw0TDQ-ZujZ_ezi5MZ6aW5ndzsLW28G_sTeuVMLH7lNETa_C5OaBPDlhpa-2iX0URaP4x-6qO3_4p8DUu0jt4kP93STYjB97ndLJPdP55ekaPBjMm9fozH5KY529Sfi4vr8y_16UVhueJzYXpkQiF20oBjOEgmQHV8qJiuBPBSadlhZ5CB1swMlZNWYcf7nimJpgJ-TD4edHcxfF9cmtutT9aNo5lcWFKrFMhKCJSZ_PAkyUVZqrIUGXz3H3iXd80XzGpSYCkZYobgANkYUopuaHfRb018aBHavYXt3sJ2b2F7sDCPvH_UNSmfcohmsj79nVNSYv5s5t4eOO-c-9MWyKu8C_8Jmrii8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864156211</pqid></control><display><type>article</type><title>Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Selvaggi, J.P. ; Salon, S. ; Kwon, O.-M. ; Chari, M.V.K. ; DeBortoli, M.</creator><creatorcontrib>Selvaggi, J.P. ; Salon, S. ; Kwon, O.-M. ; Chari, M.V.K. ; DeBortoli, M.</creatorcontrib><description>A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion which is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. Also, one can compute an equivalent multipole distribution of the real magnetic source valid for points close to the circular cylindrical boundary where the more familiar spherical multipole distribution is not valid. This method can also be used to accurately compute the far field where a finite-element formulation is known to be inaccurate</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2007.892275</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Charge simulation ; Computation ; Computational modeling ; Couplings ; Cross-disciplinary physics: materials science; rheology ; Cylinders ; Distributed computing ; Educational institutions ; Engine cylinders ; Exact sciences and technology ; Finite element methods ; Formulations ; Fourier series ; Magnetic fields ; Magnetism ; Materials science ; Mathematical analysis ; Mathematical models ; Multipoles ; Other topics in materials science ; permanent-magnet motor ; Physics ; Q-function ; Systems engineering and theory ; toroidal function ; Toroidal magnetic fields ; USA Councils</subject><ispartof>IEEE transactions on magnetics, 2007-04, Vol.43 (4), p.1153-1156</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ad124811b6a0e21f62408b3f72974035896b1ba120992af7e6c81b3dd2861a703</citedby><cites>FETCH-LOGICAL-c383t-ad124811b6a0e21f62408b3f72974035896b1ba120992af7e6c81b3dd2861a703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4137806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4137806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18661067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvaggi, J.P.</creatorcontrib><creatorcontrib>Salon, S.</creatorcontrib><creatorcontrib>Kwon, O.-M.</creatorcontrib><creatorcontrib>Chari, M.V.K.</creatorcontrib><creatorcontrib>DeBortoli, M.</creatorcontrib><title>Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion which is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. Also, one can compute an equivalent multipole distribution of the real magnetic source valid for points close to the circular cylindrical boundary where the more familiar spherical multipole distribution is not valid. This method can also be used to accurately compute the far field where a finite-element formulation is known to be inaccurate</description><subject>Charge simulation</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Couplings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cylinders</subject><subject>Distributed computing</subject><subject>Educational institutions</subject><subject>Engine cylinders</subject><subject>Exact sciences and technology</subject><subject>Finite element methods</subject><subject>Formulations</subject><subject>Fourier series</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multipoles</subject><subject>Other topics in materials science</subject><subject>permanent-magnet motor</subject><subject>Physics</subject><subject>Q-function</subject><subject>Systems engineering and theory</subject><subject>toroidal function</subject><subject>Toroidal magnetic fields</subject><subject>USA Councils</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU1v1DAQhi1EJZbCHYmLhQRcmmXGdhz7WEVNQerHge05chynuMrGi51I7U_gX-Nly4c49DQzmmdee-Yl5A3CGhH0p83l6fmaAVRrpRmrymdkhVpgASD1c7ICQFVoIcUL8jKlu1yKEmFFftRhu1tmM_sw0TDQ-ZujZ_ezi5MZ6aW5ndzsLW28G_sTeuVMLH7lNETa_C5OaBPDlhpa-2iX0URaP4x-6qO3_4p8DUu0jt4kP93STYjB97ndLJPdP55ekaPBjMm9fozH5KY529Sfi4vr8y_16UVhueJzYXpkQiF20oBjOEgmQHV8qJiuBPBSadlhZ5CB1swMlZNWYcf7nimJpgJ-TD4edHcxfF9cmtutT9aNo5lcWFKrFMhKCJSZ_PAkyUVZqrIUGXz3H3iXd80XzGpSYCkZYobgANkYUopuaHfRb018aBHavYXt3sJ2b2F7sDCPvH_UNSmfcohmsj79nVNSYv5s5t4eOO-c-9MWyKu8C_8Jmrii8g</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Selvaggi, J.P.</creator><creator>Salon, S.</creator><creator>Kwon, O.-M.</creator><creator>Chari, M.V.K.</creator><creator>DeBortoli, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070401</creationdate><title>Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions</title><author>Selvaggi, J.P. ; Salon, S. ; Kwon, O.-M. ; Chari, M.V.K. ; DeBortoli, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ad124811b6a0e21f62408b3f72974035896b1ba120992af7e6c81b3dd2861a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Charge simulation</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Couplings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cylinders</topic><topic>Distributed computing</topic><topic>Educational institutions</topic><topic>Engine cylinders</topic><topic>Exact sciences and technology</topic><topic>Finite element methods</topic><topic>Formulations</topic><topic>Fourier series</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multipoles</topic><topic>Other topics in materials science</topic><topic>permanent-magnet motor</topic><topic>Physics</topic><topic>Q-function</topic><topic>Systems engineering and theory</topic><topic>toroidal function</topic><topic>Toroidal magnetic fields</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Selvaggi, J.P.</creatorcontrib><creatorcontrib>Salon, S.</creatorcontrib><creatorcontrib>Kwon, O.-M.</creatorcontrib><creatorcontrib>Chari, M.V.K.</creatorcontrib><creatorcontrib>DeBortoli, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Selvaggi, J.P.</au><au>Salon, S.</au><au>Kwon, O.-M.</au><au>Chari, M.V.K.</au><au>DeBortoli, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2007-04-01</date><risdate>2007</risdate><volume>43</volume><issue>4</issue><spage>1153</spage><epage>1156</epage><pages>1153-1156</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A method is developed for computing the magnetic field from a circular or noncircular cylindrical magnetic source. A Fourier series expansion is introduced which yields an alternative to the more familiar spherical harmonic solution, Elliptic integral solution, or Bessel function solution. This alternate formulation coupled with a method called charge simulation allows one to compute the external magnetic field from an arbitrary magnetic source in terms of a toroidal expansion which is valid on any finite hypothetical external observation cylinder. In other words, the magnetic scalar potential or the magnetic field intensity is computed on a exterior cylinder which encloses the magnetic source. Also, one can compute an equivalent multipole distribution of the real magnetic source valid for points close to the circular cylindrical boundary where the more familiar spherical multipole distribution is not valid. This method can also be used to accurately compute the far field where a finite-element formulation is known to be inaccurate</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2007.892275</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2007-04, Vol.43 (4), p.1153-1156 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_proquest_miscellaneous_880674416 |
source | IEEE Electronic Library (IEL) |
subjects | Charge simulation Computation Computational modeling Couplings Cross-disciplinary physics: materials science rheology Cylinders Distributed computing Educational institutions Engine cylinders Exact sciences and technology Finite element methods Formulations Fourier series Magnetic fields Magnetism Materials science Mathematical analysis Mathematical models Multipoles Other topics in materials science permanent-magnet motor Physics Q-function Systems engineering and theory toroidal function Toroidal magnetic fields USA Councils |
title | Computation of the External Magnetic Field, Near-Field or Far-Field, From a Circular Cylindrical Magnetic Source Using Toroidal Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20External%20Magnetic%20Field,%20Near-Field%20or%20Far-Field,%20From%20a%20Circular%20Cylindrical%20Magnetic%20Source%20Using%20Toroidal%20Functions&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Selvaggi,%20J.P.&rft.date=2007-04-01&rft.volume=43&rft.issue=4&rft.spage=1153&rft.epage=1156&rft.pages=1153-1156&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2007.892275&rft_dat=%3Cproquest_RIE%3E880674416%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864156211&rft_id=info:pmid/&rft_ieee_id=4137806&rfr_iscdi=true |