In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster

The application of an electric propulsion diagnostic system for in situ thermal characterization of electric thrusters is studied, as described previously. Exemplarily, the surface temperature profile of the accelerator grid of a gridded ion thruster RIT-22 is obtained and characterized. In situ pyr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2011-05, Vol.27 (3), p.532-537
Hauptverfasser: Bundesmann, C, Tartz, M, Scholze, F, Neumann, H, Leiter, H. J, Scortecci, F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 3
container_start_page 532
container_title Journal of propulsion and power
container_volume 27
creator Bundesmann, C
Tartz, M
Scholze, F
Neumann, H
Leiter, H. J
Scortecci, F
description The application of an electric propulsion diagnostic system for in situ thermal characterization of electric thrusters is studied, as described previously. Exemplarily, the surface temperature profile of the accelerator grid of a gridded ion thruster RIT-22 is obtained and characterized. In situ pyrometer line scans in combination with precise measurements of geometrical grid parameters are demonstrated. The accelerator grid surface temperature of the firing thruster is obtained by a model calculation that requires the knowledge of geometrical grid parameters, such as hole diameter, distance between holes, or grid shape. These parameters are also measured in situ with a telemicroscope for high-resolution optical imaging and a triangular laser head for surface profile scanning. The distance between grid surface and pyrometer optics are precisely monitored with the support of the triangular laser head, for which the position is fixed with respect to the pyrometer. The distance measurement allows for correcting the measurement spot size of the pyrometer. The temperature profiles at three different beam power levels (1250, 2250, and 4000 W), and warm-up and cool-down phases demonstrate the capabilities of the complex equipment. It is found that thermal steady state is reached after 4 h of thruster firing. Furthermore, it is shown that the accelerator grid surface temperature increases almost linearly with increasing beam current. [PUBLISHER ABSTRACT]
doi_str_mv 10.2514/1.50049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880670186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2957667851</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-9946804e0e9a3d0dd504aa1df8b5100eb218ef89ef08182384984c221bb13d4e3</originalsourceid><addsrcrecordid>eNptkNFKwzAUhoMoOKf4CgEF8aLzpEnT08sxdA4HXjivQ9qmtKNrZ5KC-vRmTlCGVwfO-c7Hz0_IJYNJnDBxxyYJgMiOyIglnEccU3lMRpAKjIRM8JScObcGYBJlOiJPi46-NH6gq9rYjW7prNZWF97Y5lP7pu9oX1FfGzotCtMaq31v6dw25W6vO7oIxKq2gwsf5-Sk0q0zFz9zTF4f7lezx2j5PF_MpstIc4E-yjIhEYQBk2leQlkmILRmZYV5wgBMHjM0FWamAmQYcxQZiiKOWZ4zXgrDx-Rm793a_m0wzqtN40K6VnemH5xCBJkCQxnIqwNy3Q-2C-EU4yGFFMDg11fY3jlrKrW1zUbbD8VA7TpVTH13GsjbPakbrf-49me1LStVDW3rzbsP7PW_7IHyCwizgCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346864010</pqid></control><display><type>article</type><title>In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster</title><source>Alma/SFX Local Collection</source><creator>Bundesmann, C ; Tartz, M ; Scholze, F ; Neumann, H ; Leiter, H. J ; Scortecci, F</creator><contributor>King, L</contributor><creatorcontrib>Bundesmann, C ; Tartz, M ; Scholze, F ; Neumann, H ; Leiter, H. J ; Scortecci, F ; King, L</creatorcontrib><description>The application of an electric propulsion diagnostic system for in situ thermal characterization of electric thrusters is studied, as described previously. Exemplarily, the surface temperature profile of the accelerator grid of a gridded ion thruster RIT-22 is obtained and characterized. In situ pyrometer line scans in combination with precise measurements of geometrical grid parameters are demonstrated. The accelerator grid surface temperature of the firing thruster is obtained by a model calculation that requires the knowledge of geometrical grid parameters, such as hole diameter, distance between holes, or grid shape. These parameters are also measured in situ with a telemicroscope for high-resolution optical imaging and a triangular laser head for surface profile scanning. The distance between grid surface and pyrometer optics are precisely monitored with the support of the triangular laser head, for which the position is fixed with respect to the pyrometer. The distance measurement allows for correcting the measurement spot size of the pyrometer. The temperature profiles at three different beam power levels (1250, 2250, and 4000 W), and warm-up and cool-down phases demonstrate the capabilities of the complex equipment. It is found that thermal steady state is reached after 4 h of thruster firing. Furthermore, it is shown that the accelerator grid surface temperature increases almost linearly with increasing beam current. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.50049</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Accelerators ; Electric power generation ; Firing ; Lasers ; Mathematical models ; Pyrometers ; Surface temperature ; Thrusters</subject><ispartof>Journal of propulsion and power, 2011-05, Vol.27 (3), p.532-537</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics May-Jun 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-9946804e0e9a3d0dd504aa1df8b5100eb218ef89ef08182384984c221bb13d4e3</citedby><cites>FETCH-LOGICAL-a348t-9946804e0e9a3d0dd504aa1df8b5100eb218ef89ef08182384984c221bb13d4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>King, L</contributor><creatorcontrib>Bundesmann, C</creatorcontrib><creatorcontrib>Tartz, M</creatorcontrib><creatorcontrib>Scholze, F</creatorcontrib><creatorcontrib>Neumann, H</creatorcontrib><creatorcontrib>Leiter, H. J</creatorcontrib><creatorcontrib>Scortecci, F</creatorcontrib><title>In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster</title><title>Journal of propulsion and power</title><description>The application of an electric propulsion diagnostic system for in situ thermal characterization of electric thrusters is studied, as described previously. Exemplarily, the surface temperature profile of the accelerator grid of a gridded ion thruster RIT-22 is obtained and characterized. In situ pyrometer line scans in combination with precise measurements of geometrical grid parameters are demonstrated. The accelerator grid surface temperature of the firing thruster is obtained by a model calculation that requires the knowledge of geometrical grid parameters, such as hole diameter, distance between holes, or grid shape. These parameters are also measured in situ with a telemicroscope for high-resolution optical imaging and a triangular laser head for surface profile scanning. The distance between grid surface and pyrometer optics are precisely monitored with the support of the triangular laser head, for which the position is fixed with respect to the pyrometer. The distance measurement allows for correcting the measurement spot size of the pyrometer. The temperature profiles at three different beam power levels (1250, 2250, and 4000 W), and warm-up and cool-down phases demonstrate the capabilities of the complex equipment. It is found that thermal steady state is reached after 4 h of thruster firing. Furthermore, it is shown that the accelerator grid surface temperature increases almost linearly with increasing beam current. [PUBLISHER ABSTRACT]</description><subject>Accelerators</subject><subject>Electric power generation</subject><subject>Firing</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Pyrometers</subject><subject>Surface temperature</subject><subject>Thrusters</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkNFKwzAUhoMoOKf4CgEF8aLzpEnT08sxdA4HXjivQ9qmtKNrZ5KC-vRmTlCGVwfO-c7Hz0_IJYNJnDBxxyYJgMiOyIglnEccU3lMRpAKjIRM8JScObcGYBJlOiJPi46-NH6gq9rYjW7prNZWF97Y5lP7pu9oX1FfGzotCtMaq31v6dw25W6vO7oIxKq2gwsf5-Sk0q0zFz9zTF4f7lezx2j5PF_MpstIc4E-yjIhEYQBk2leQlkmILRmZYV5wgBMHjM0FWamAmQYcxQZiiKOWZ4zXgrDx-Rm793a_m0wzqtN40K6VnemH5xCBJkCQxnIqwNy3Q-2C-EU4yGFFMDg11fY3jlrKrW1zUbbD8VA7TpVTH13GsjbPakbrf-49me1LStVDW3rzbsP7PW_7IHyCwizgCQ</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Bundesmann, C</creator><creator>Tartz, M</creator><creator>Scholze, F</creator><creator>Neumann, H</creator><creator>Leiter, H. J</creator><creator>Scortecci, F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster</title><author>Bundesmann, C ; Tartz, M ; Scholze, F ; Neumann, H ; Leiter, H. J ; Scortecci, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-9946804e0e9a3d0dd504aa1df8b5100eb218ef89ef08182384984c221bb13d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accelerators</topic><topic>Electric power generation</topic><topic>Firing</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Pyrometers</topic><topic>Surface temperature</topic><topic>Thrusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bundesmann, C</creatorcontrib><creatorcontrib>Tartz, M</creatorcontrib><creatorcontrib>Scholze, F</creatorcontrib><creatorcontrib>Neumann, H</creatorcontrib><creatorcontrib>Leiter, H. J</creatorcontrib><creatorcontrib>Scortecci, F</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bundesmann, C</au><au>Tartz, M</au><au>Scholze, F</au><au>Neumann, H</au><au>Leiter, H. J</au><au>Scortecci, F</au><au>King, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster</atitle><jtitle>Journal of propulsion and power</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>27</volume><issue>3</issue><spage>532</spage><epage>537</epage><pages>532-537</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>The application of an electric propulsion diagnostic system for in situ thermal characterization of electric thrusters is studied, as described previously. Exemplarily, the surface temperature profile of the accelerator grid of a gridded ion thruster RIT-22 is obtained and characterized. In situ pyrometer line scans in combination with precise measurements of geometrical grid parameters are demonstrated. The accelerator grid surface temperature of the firing thruster is obtained by a model calculation that requires the knowledge of geometrical grid parameters, such as hole diameter, distance between holes, or grid shape. These parameters are also measured in situ with a telemicroscope for high-resolution optical imaging and a triangular laser head for surface profile scanning. The distance between grid surface and pyrometer optics are precisely monitored with the support of the triangular laser head, for which the position is fixed with respect to the pyrometer. The distance measurement allows for correcting the measurement spot size of the pyrometer. The temperature profiles at three different beam power levels (1250, 2250, and 4000 W), and warm-up and cool-down phases demonstrate the capabilities of the complex equipment. It is found that thermal steady state is reached after 4 h of thruster firing. Furthermore, it is shown that the accelerator grid surface temperature increases almost linearly with increasing beam current. [PUBLISHER ABSTRACT]</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.50049</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2011-05, Vol.27 (3), p.532-537
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_miscellaneous_880670186
source Alma/SFX Local Collection
subjects Accelerators
Electric power generation
Firing
Lasers
Mathematical models
Pyrometers
Surface temperature
Thrusters
title In Situ Thermal Characterization of the Accelerator Grid of an Ion Thruster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A27%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Thermal%20Characterization%20of%20the%20Accelerator%20Grid%20of%20an%20Ion%20Thruster&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Bundesmann,%20C&rft.date=2011-05-01&rft.volume=27&rft.issue=3&rft.spage=532&rft.epage=537&rft.pages=532-537&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.50049&rft_dat=%3Cproquest_cross%3E2957667851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346864010&rft_id=info:pmid/&rfr_iscdi=true