Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger
This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as s...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2011-07, Vol.50 (3), p.480-486 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 3 |
container_start_page | 480 |
container_title | ISA transactions |
container_volume | 50 |
creator | Escobar, R.F. Astorga-Zaragoza, C.M. Téllez-Anguiano, A.C. Juárez-Romero, D. Hernández, J.A. Guerrero-Ramírez, G.V. |
description | This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks. |
doi_str_mv | 10.1016/j.isatra.2011.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880669448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057811000437</els_id><sourcerecordid>867325157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</originalsourceid><addsrcrecordid>eNqF0U2r1DAUBuAgine8-g9EshFXHU-StklcCJeLX3DBhboOp-npTIZOU5N28P57O3bUna5C4Dk54X0Zey5gK0DUrw_bkHFKuJUgxBbUFkA-YBthtC0kSPmQbQCELaDS5oo9yfkAi6isecyupKhAGGU2LHyhIcfEO5z7ibc0kZ9CHDgOLQ859vjrdgrI92G3L3YYBh6bTOlEKb_hN-PYB7-iKXLkbZybnooxjMT3hBOnH36Pw47SU_aowz7Ts8t5zb69f_f19mNx9_nDp9ubu8KXUk1FbbAzpvVSoy5L8KbWQnfSat2BtKY2pRJ1aavKWNUoqwSJCivV2Y7aRjZSXbNX67tjit9nypM7huyp73GgOGdnDNS1LUvzf1lrJStR6UWWq_Qp5pyoc2MKR0z3ToA7t-EObm3DndtwoNyS9TL24rJgbo7U_hn6Hf8CXl4AZo99l3DwIf91pQQN6rz_7epoCe4UKLnsAw2e2pCWwlwbw79_8hOcdKlG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867325157</pqid></control><display><type>article</type><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</creator><creatorcontrib>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</creatorcontrib><description>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2011.03.002</identifier><identifier>PMID: 21501838</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Analytical and numerical techniques ; Applied sciences ; Computer science; control theory; systems ; Computer Simulation ; Control theory. Systems ; Devices using thermal energy ; Dynamical systems ; Energy ; Energy. Thermal use of fuels ; Equipment Failure ; Equipment Failure Analysis - methods ; Exact sciences and technology ; Failure ; Fault detection ; FDI ; Feedback ; Fundamental areas of phenomenology (including applications) ; Heat exchangers ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat pipes ; Heat transfer ; Heating - instrumentation ; Heating - methods ; High-gain observers ; Mathematical analysis ; Modelling and identification ; Models, Theoretical ; Observers ; Physics ; Sensors</subject><ispartof>ISA transactions, 2011-07, Vol.50 (3), p.480-486</ispartof><rights>2011 ISA</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</citedby><cites>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2011.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24207037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21501838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Escobar, R.F.</creatorcontrib><creatorcontrib>Astorga-Zaragoza, C.M.</creatorcontrib><creatorcontrib>Téllez-Anguiano, A.C.</creatorcontrib><creatorcontrib>Juárez-Romero, D.</creatorcontrib><creatorcontrib>Hernández, J.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</description><subject>Algorithms</subject><subject>Analytical and numerical techniques</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control theory. Systems</subject><subject>Devices using thermal energy</subject><subject>Dynamical systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipment Failure</subject><subject>Equipment Failure Analysis - methods</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fault detection</subject><subject>FDI</subject><subject>Feedback</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat exchangers</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Heating - instrumentation</subject><subject>Heating - methods</subject><subject>High-gain observers</subject><subject>Mathematical analysis</subject><subject>Modelling and identification</subject><subject>Models, Theoretical</subject><subject>Observers</subject><subject>Physics</subject><subject>Sensors</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U2r1DAUBuAgine8-g9EshFXHU-StklcCJeLX3DBhboOp-npTIZOU5N28P57O3bUna5C4Dk54X0Zey5gK0DUrw_bkHFKuJUgxBbUFkA-YBthtC0kSPmQbQCELaDS5oo9yfkAi6isecyupKhAGGU2LHyhIcfEO5z7ibc0kZ9CHDgOLQ859vjrdgrI92G3L3YYBh6bTOlEKb_hN-PYB7-iKXLkbZybnooxjMT3hBOnH36Pw47SU_aowz7Ts8t5zb69f_f19mNx9_nDp9ubu8KXUk1FbbAzpvVSoy5L8KbWQnfSat2BtKY2pRJ1aavKWNUoqwSJCivV2Y7aRjZSXbNX67tjit9nypM7huyp73GgOGdnDNS1LUvzf1lrJStR6UWWq_Qp5pyoc2MKR0z3ToA7t-EObm3DndtwoNyS9TL24rJgbo7U_hn6Hf8CXl4AZo99l3DwIf91pQQN6rz_7epoCe4UKLnsAw2e2pCWwlwbw79_8hOcdKlG</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Escobar, R.F.</creator><creator>Astorga-Zaragoza, C.M.</creator><creator>Téllez-Anguiano, A.C.</creator><creator>Juárez-Romero, D.</creator><creator>Hernández, J.A.</creator><creator>Guerrero-Ramírez, G.V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><author>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analytical and numerical techniques</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control theory. Systems</topic><topic>Devices using thermal energy</topic><topic>Dynamical systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipment Failure</topic><topic>Equipment Failure Analysis - methods</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fault detection</topic><topic>FDI</topic><topic>Feedback</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat exchangers</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Heating - instrumentation</topic><topic>Heating - methods</topic><topic>High-gain observers</topic><topic>Mathematical analysis</topic><topic>Modelling and identification</topic><topic>Models, Theoretical</topic><topic>Observers</topic><topic>Physics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar, R.F.</creatorcontrib><creatorcontrib>Astorga-Zaragoza, C.M.</creatorcontrib><creatorcontrib>Téllez-Anguiano, A.C.</creatorcontrib><creatorcontrib>Juárez-Romero, D.</creatorcontrib><creatorcontrib>Hernández, J.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escobar, R.F.</au><au>Astorga-Zaragoza, C.M.</au><au>Téllez-Anguiano, A.C.</au><au>Juárez-Romero, D.</au><au>Hernández, J.A.</au><au>Guerrero-Ramírez, G.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>50</volume><issue>3</issue><spage>480</spage><epage>486</epage><pages>480-486</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21501838</pmid><doi>10.1016/j.isatra.2011.03.002</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2011-07, Vol.50 (3), p.480-486 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_880669448 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Analytical and numerical techniques Applied sciences Computer science control theory systems Computer Simulation Control theory. Systems Devices using thermal energy Dynamical systems Energy Energy. Thermal use of fuels Equipment Failure Equipment Failure Analysis - methods Exact sciences and technology Failure Fault detection FDI Feedback Fundamental areas of phenomenology (including applications) Heat exchangers Heat exchangers (included heat transformers, condensers, cooling towers) Heat pipes Heat transfer Heating - instrumentation Heating - methods High-gain observers Mathematical analysis Modelling and identification Models, Theoretical Observers Physics Sensors |
title | Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20fault%20detection%20and%20isolation%20via%20high-gain%20observers:%20Application%20to%20a%20double-pipe%20heat%20exchanger&rft.jtitle=ISA%20transactions&rft.au=Escobar,%20R.F.&rft.date=2011-07-01&rft.volume=50&rft.issue=3&rft.spage=480&rft.epage=486&rft.pages=480-486&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2011.03.002&rft_dat=%3Cproquest_cross%3E867325157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867325157&rft_id=info:pmid/21501838&rft_els_id=S0019057811000437&rfr_iscdi=true |