Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger

This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2011-07, Vol.50 (3), p.480-486
Hauptverfasser: Escobar, R.F., Astorga-Zaragoza, C.M., Téllez-Anguiano, A.C., Juárez-Romero, D., Hernández, J.A., Guerrero-Ramírez, G.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 3
container_start_page 480
container_title ISA transactions
container_volume 50
creator Escobar, R.F.
Astorga-Zaragoza, C.M.
Téllez-Anguiano, A.C.
Juárez-Romero, D.
Hernández, J.A.
Guerrero-Ramírez, G.V.
description This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.
doi_str_mv 10.1016/j.isatra.2011.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880669448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057811000437</els_id><sourcerecordid>867325157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</originalsourceid><addsrcrecordid>eNqF0U2r1DAUBuAgine8-g9EshFXHU-StklcCJeLX3DBhboOp-npTIZOU5N28P57O3bUna5C4Dk54X0Zey5gK0DUrw_bkHFKuJUgxBbUFkA-YBthtC0kSPmQbQCELaDS5oo9yfkAi6isecyupKhAGGU2LHyhIcfEO5z7ibc0kZ9CHDgOLQ859vjrdgrI92G3L3YYBh6bTOlEKb_hN-PYB7-iKXLkbZybnooxjMT3hBOnH36Pw47SU_aowz7Ts8t5zb69f_f19mNx9_nDp9ubu8KXUk1FbbAzpvVSoy5L8KbWQnfSat2BtKY2pRJ1aavKWNUoqwSJCivV2Y7aRjZSXbNX67tjit9nypM7huyp73GgOGdnDNS1LUvzf1lrJStR6UWWq_Qp5pyoc2MKR0z3ToA7t-EObm3DndtwoNyS9TL24rJgbo7U_hn6Hf8CXl4AZo99l3DwIf91pQQN6rz_7epoCe4UKLnsAw2e2pCWwlwbw79_8hOcdKlG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867325157</pqid></control><display><type>article</type><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</creator><creatorcontrib>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</creatorcontrib><description>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2011.03.002</identifier><identifier>PMID: 21501838</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Analytical and numerical techniques ; Applied sciences ; Computer science; control theory; systems ; Computer Simulation ; Control theory. Systems ; Devices using thermal energy ; Dynamical systems ; Energy ; Energy. Thermal use of fuels ; Equipment Failure ; Equipment Failure Analysis - methods ; Exact sciences and technology ; Failure ; Fault detection ; FDI ; Feedback ; Fundamental areas of phenomenology (including applications) ; Heat exchangers ; Heat exchangers (included heat transformers, condensers, cooling towers) ; Heat pipes ; Heat transfer ; Heating - instrumentation ; Heating - methods ; High-gain observers ; Mathematical analysis ; Modelling and identification ; Models, Theoretical ; Observers ; Physics ; Sensors</subject><ispartof>ISA transactions, 2011-07, Vol.50 (3), p.480-486</ispartof><rights>2011 ISA</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</citedby><cites>FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2011.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24207037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21501838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Escobar, R.F.</creatorcontrib><creatorcontrib>Astorga-Zaragoza, C.M.</creatorcontrib><creatorcontrib>Téllez-Anguiano, A.C.</creatorcontrib><creatorcontrib>Juárez-Romero, D.</creatorcontrib><creatorcontrib>Hernández, J.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</description><subject>Algorithms</subject><subject>Analytical and numerical techniques</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Control theory. Systems</subject><subject>Devices using thermal energy</subject><subject>Dynamical systems</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipment Failure</subject><subject>Equipment Failure Analysis - methods</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fault detection</subject><subject>FDI</subject><subject>Feedback</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat exchangers</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Heating - instrumentation</subject><subject>Heating - methods</subject><subject>High-gain observers</subject><subject>Mathematical analysis</subject><subject>Modelling and identification</subject><subject>Models, Theoretical</subject><subject>Observers</subject><subject>Physics</subject><subject>Sensors</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U2r1DAUBuAgine8-g9EshFXHU-StklcCJeLX3DBhboOp-npTIZOU5N28P57O3bUna5C4Dk54X0Zey5gK0DUrw_bkHFKuJUgxBbUFkA-YBthtC0kSPmQbQCELaDS5oo9yfkAi6isecyupKhAGGU2LHyhIcfEO5z7ibc0kZ9CHDgOLQ859vjrdgrI92G3L3YYBh6bTOlEKb_hN-PYB7-iKXLkbZybnooxjMT3hBOnH36Pw47SU_aowz7Ts8t5zb69f_f19mNx9_nDp9ubu8KXUk1FbbAzpvVSoy5L8KbWQnfSat2BtKY2pRJ1aavKWNUoqwSJCivV2Y7aRjZSXbNX67tjit9nypM7huyp73GgOGdnDNS1LUvzf1lrJStR6UWWq_Qp5pyoc2MKR0z3ToA7t-EObm3DndtwoNyS9TL24rJgbo7U_hn6Hf8CXl4AZo99l3DwIf91pQQN6rz_7epoCe4UKLnsAw2e2pCWwlwbw79_8hOcdKlG</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Escobar, R.F.</creator><creator>Astorga-Zaragoza, C.M.</creator><creator>Téllez-Anguiano, A.C.</creator><creator>Juárez-Romero, D.</creator><creator>Hernández, J.A.</creator><creator>Guerrero-Ramírez, G.V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</title><author>Escobar, R.F. ; Astorga-Zaragoza, C.M. ; Téllez-Anguiano, A.C. ; Juárez-Romero, D. ; Hernández, J.A. ; Guerrero-Ramírez, G.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-68af88dc27a7440c86717f2977f02986843164955893b3931e15a53f9fedb2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Analytical and numerical techniques</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Control theory. Systems</topic><topic>Devices using thermal energy</topic><topic>Dynamical systems</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipment Failure</topic><topic>Equipment Failure Analysis - methods</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fault detection</topic><topic>FDI</topic><topic>Feedback</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat exchangers</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Heating - instrumentation</topic><topic>Heating - methods</topic><topic>High-gain observers</topic><topic>Mathematical analysis</topic><topic>Modelling and identification</topic><topic>Models, Theoretical</topic><topic>Observers</topic><topic>Physics</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar, R.F.</creatorcontrib><creatorcontrib>Astorga-Zaragoza, C.M.</creatorcontrib><creatorcontrib>Téllez-Anguiano, A.C.</creatorcontrib><creatorcontrib>Juárez-Romero, D.</creatorcontrib><creatorcontrib>Hernández, J.A.</creatorcontrib><creatorcontrib>Guerrero-Ramírez, G.V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escobar, R.F.</au><au>Astorga-Zaragoza, C.M.</au><au>Téllez-Anguiano, A.C.</au><au>Juárez-Romero, D.</au><au>Hernández, J.A.</au><au>Guerrero-Ramírez, G.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>50</volume><issue>3</issue><spage>480</spage><epage>486</epage><pages>480-486</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper deals with fault detection and isolation (FDI) in sensors applied to a concentric-pipe counter-flow heat exchanger. The proposed FDI is based on the analytical redundancy implementing nonlinear high-gain observers which are used to generate residuals when a sensor fault is presented (as software sensors). By evaluating the generated residual, it is possible to switch between the sensor and the observer when a failure is detected. Experiments in a heat exchanger pilot validate the effectiveness of the approach. The FDI technique is easy to implement allowing the industries to have an excellent alternative tool to keep their heat transfer process under supervision. The main contribution of this work is based on a dynamic model with heat transfer coefficients which depend on temperature and flow used to estimate the output temperatures of a heat exchanger. This model provides a satisfactory approximation of the states of the heat exchanger in order to allow its implementation in a FDI system used to perform supervision tasks.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21501838</pmid><doi>10.1016/j.isatra.2011.03.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2011-07, Vol.50 (3), p.480-486
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_880669448
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Analytical and numerical techniques
Applied sciences
Computer science
control theory
systems
Computer Simulation
Control theory. Systems
Devices using thermal energy
Dynamical systems
Energy
Energy. Thermal use of fuels
Equipment Failure
Equipment Failure Analysis - methods
Exact sciences and technology
Failure
Fault detection
FDI
Feedback
Fundamental areas of phenomenology (including applications)
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Heat pipes
Heat transfer
Heating - instrumentation
Heating - methods
High-gain observers
Mathematical analysis
Modelling and identification
Models, Theoretical
Observers
Physics
Sensors
title Sensor fault detection and isolation via high-gain observers: Application to a double-pipe heat exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensor%20fault%20detection%20and%20isolation%20via%20high-gain%20observers:%20Application%20to%20a%20double-pipe%20heat%20exchanger&rft.jtitle=ISA%20transactions&rft.au=Escobar,%20R.F.&rft.date=2011-07-01&rft.volume=50&rft.issue=3&rft.spage=480&rft.epage=486&rft.pages=480-486&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2011.03.002&rft_dat=%3Cproquest_cross%3E867325157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867325157&rft_id=info:pmid/21501838&rft_els_id=S0019057811000437&rfr_iscdi=true