Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions

► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2011-09, Vol.88 (9), p.2995-3004
Hauptverfasser: Roy, J.P., Mishra, M.K., Misra, Ashok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3004
container_issue 9
container_start_page 2995
container_title Applied energy
container_volume 88
creator Roy, J.P.
Mishra, M.K.
Misra, Ashok
description ► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility. This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.
doi_str_mv 10.1016/j.apenergy.2011.02.042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880667289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261911001541</els_id><sourcerecordid>1777142935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</originalsourceid><addsrcrecordid>eNqFkU2PFCEQhjtGE8fVv6BcjF66pegeoG-ayfqRbLJG3TOppYtZxh4YgdbMv5fJrB6VC6Ty1FuknqZ5DrwDDvLNrsMDBUrbYyc4QMdFxwfxoFmBVqIdAfTDZsV7LlshYXzcPMl5xzkXIPiqWT5TcjHtMVhiGHA-Zp9ZdPXNrtMWg7fsC4bvPhDbHO1M7JcvdywvB0p3hMWHLVvCRIlN3jlKFAo71VmOS6qRhfaVxLIkYjaGyRcfQ37aPHI4Z3p2f180N-8vv20-tlfXHz5t3l21duihtLeDE_2ESmEveq5BCC6hd73UKDTd6lHiGiaYtNNqoFqVMCiiNSJapYTtL5pX59xDij8WysXsfbY0zxgoLtlozaVUQo-VfP1PEpRSMIixX1dUnlGbYs6JnDkkv8d0NMDNyYjZmT9GzMmI4cJUI7Xx5f0MzBZnl-rSff7bLQaQdQxU7sWZcxgNblNlbr7WIMlPZz3wSrw9E1SX99NTMtl6qgonn8gWM0X_v8_8BgiOr58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777142935</pqid></control><display><type>article</type><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</creator><creatorcontrib>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</creatorcontrib><description>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility. This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2011.02.042</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational efficiency ; computers ; Computing time ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; heat ; Heat source temperatures ; Heat sources ; Inlet temperature ; Irreversibility ; mass flow ; Organic Rankine Cycle ; Parametric optimization ; Performance analysis ; Properties and use of thermal fluids ; Rankine cycle ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Superheating ; temperature ; Theoretical studies. Data and constants. Metering ; Thermodynamics, mechanics etc. For energy applications ; Turbines ; Working fluids</subject><ispartof>Applied energy, 2011-09, Vol.88 (9), p.2995-3004</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</citedby><cites>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261911001541$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24161771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, J.P.</creatorcontrib><creatorcontrib>Mishra, M.K.</creatorcontrib><creatorcontrib>Misra, Ashok</creatorcontrib><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><title>Applied energy</title><description>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility. This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>computers</subject><subject>Computing time</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heat source temperatures</subject><subject>Heat sources</subject><subject>Inlet temperature</subject><subject>Irreversibility</subject><subject>mass flow</subject><subject>Organic Rankine Cycle</subject><subject>Parametric optimization</subject><subject>Performance analysis</subject><subject>Properties and use of thermal fluids</subject><subject>Rankine cycle</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Superheating</subject><subject>temperature</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermodynamics, mechanics etc. For energy applications</subject><subject>Turbines</subject><subject>Working fluids</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2PFCEQhjtGE8fVv6BcjF66pegeoG-ayfqRbLJG3TOppYtZxh4YgdbMv5fJrB6VC6Ty1FuknqZ5DrwDDvLNrsMDBUrbYyc4QMdFxwfxoFmBVqIdAfTDZsV7LlshYXzcPMl5xzkXIPiqWT5TcjHtMVhiGHA-Zp9ZdPXNrtMWg7fsC4bvPhDbHO1M7JcvdywvB0p3hMWHLVvCRIlN3jlKFAo71VmOS6qRhfaVxLIkYjaGyRcfQ37aPHI4Z3p2f180N-8vv20-tlfXHz5t3l21duihtLeDE_2ESmEveq5BCC6hd73UKDTd6lHiGiaYtNNqoFqVMCiiNSJapYTtL5pX59xDij8WysXsfbY0zxgoLtlozaVUQo-VfP1PEpRSMIixX1dUnlGbYs6JnDkkv8d0NMDNyYjZmT9GzMmI4cJUI7Xx5f0MzBZnl-rSff7bLQaQdQxU7sWZcxgNblNlbr7WIMlPZz3wSrw9E1SX99NTMtl6qgonn8gWM0X_v8_8BgiOr58</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Roy, J.P.</creator><creator>Mishra, M.K.</creator><creator>Misra, Ashok</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><author>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>computers</topic><topic>Computing time</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heat source temperatures</topic><topic>Heat sources</topic><topic>Inlet temperature</topic><topic>Irreversibility</topic><topic>mass flow</topic><topic>Organic Rankine Cycle</topic><topic>Parametric optimization</topic><topic>Performance analysis</topic><topic>Properties and use of thermal fluids</topic><topic>Rankine cycle</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Superheating</topic><topic>temperature</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermodynamics, mechanics etc. For energy applications</topic><topic>Turbines</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, J.P.</creatorcontrib><creatorcontrib>Mishra, M.K.</creatorcontrib><creatorcontrib>Misra, Ashok</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, J.P.</au><au>Mishra, M.K.</au><au>Misra, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</atitle><jtitle>Applied energy</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>88</volume><issue>9</issue><spage>2995</spage><epage>3004</epage><pages>2995-3004</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility. This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2011.02.042</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2011-09, Vol.88 (9), p.2995-3004
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_880667289
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Computational efficiency
computers
Computing time
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
heat
Heat source temperatures
Heat sources
Inlet temperature
Irreversibility
mass flow
Organic Rankine Cycle
Parametric optimization
Performance analysis
Properties and use of thermal fluids
Rankine cycle
Refrigerants
Refrigerating engineering
Refrigerating engineering. Cryogenics. Food conservation
Superheating
temperature
Theoretical studies. Data and constants. Metering
Thermodynamics, mechanics etc. For energy applications
Turbines
Working fluids
title Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20an%20Organic%20Rankine%20Cycle%20with%20superheating%20under%20different%20heat%20source%20temperature%20conditions&rft.jtitle=Applied%20energy&rft.au=Roy,%20J.P.&rft.date=2011-09-01&rft.volume=88&rft.issue=9&rft.spage=2995&rft.epage=3004&rft.pages=2995-3004&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2011.02.042&rft_dat=%3Cproquest_cross%3E1777142935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777142935&rft_id=info:pmid/&rft_els_id=S0306261911001541&rfr_iscdi=true