Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions
► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15 K above TIT. ► Compared efficiencies, irreversibility, work out...
Gespeichert in:
Veröffentlicht in: | Applied energy 2011-09, Vol.88 (9), p.2995-3004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3004 |
---|---|
container_issue | 9 |
container_start_page | 2995 |
container_title | Applied energy |
container_volume | 88 |
creator | Roy, J.P. Mishra, M.K. Misra, Ashok |
description | ► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15
K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility.
This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power. |
doi_str_mv | 10.1016/j.apenergy.2011.02.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880667289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261911001541</els_id><sourcerecordid>1777142935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</originalsourceid><addsrcrecordid>eNqFkU2PFCEQhjtGE8fVv6BcjF66pegeoG-ayfqRbLJG3TOppYtZxh4YgdbMv5fJrB6VC6Ty1FuknqZ5DrwDDvLNrsMDBUrbYyc4QMdFxwfxoFmBVqIdAfTDZsV7LlshYXzcPMl5xzkXIPiqWT5TcjHtMVhiGHA-Zp9ZdPXNrtMWg7fsC4bvPhDbHO1M7JcvdywvB0p3hMWHLVvCRIlN3jlKFAo71VmOS6qRhfaVxLIkYjaGyRcfQ37aPHI4Z3p2f180N-8vv20-tlfXHz5t3l21duihtLeDE_2ESmEveq5BCC6hd73UKDTd6lHiGiaYtNNqoFqVMCiiNSJapYTtL5pX59xDij8WysXsfbY0zxgoLtlozaVUQo-VfP1PEpRSMIixX1dUnlGbYs6JnDkkv8d0NMDNyYjZmT9GzMmI4cJUI7Xx5f0MzBZnl-rSff7bLQaQdQxU7sWZcxgNblNlbr7WIMlPZz3wSrw9E1SX99NTMtl6qgonn8gWM0X_v8_8BgiOr58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777142935</pqid></control><display><type>article</type><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</creator><creatorcontrib>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</creatorcontrib><description>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15
K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility.
This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2011.02.042</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational efficiency ; computers ; Computing time ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; heat ; Heat source temperatures ; Heat sources ; Inlet temperature ; Irreversibility ; mass flow ; Organic Rankine Cycle ; Parametric optimization ; Performance analysis ; Properties and use of thermal fluids ; Rankine cycle ; Refrigerants ; Refrigerating engineering ; Refrigerating engineering. Cryogenics. Food conservation ; Superheating ; temperature ; Theoretical studies. Data and constants. Metering ; Thermodynamics, mechanics etc. For energy applications ; Turbines ; Working fluids</subject><ispartof>Applied energy, 2011-09, Vol.88 (9), p.2995-3004</ispartof><rights>2011 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</citedby><cites>FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261911001541$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24161771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, J.P.</creatorcontrib><creatorcontrib>Mishra, M.K.</creatorcontrib><creatorcontrib>Misra, Ashok</creatorcontrib><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><title>Applied energy</title><description>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15
K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility.
This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</description><subject>Applied sciences</subject><subject>Computational efficiency</subject><subject>computers</subject><subject>Computing time</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>heat</subject><subject>Heat source temperatures</subject><subject>Heat sources</subject><subject>Inlet temperature</subject><subject>Irreversibility</subject><subject>mass flow</subject><subject>Organic Rankine Cycle</subject><subject>Parametric optimization</subject><subject>Performance analysis</subject><subject>Properties and use of thermal fluids</subject><subject>Rankine cycle</subject><subject>Refrigerants</subject><subject>Refrigerating engineering</subject><subject>Refrigerating engineering. Cryogenics. Food conservation</subject><subject>Superheating</subject><subject>temperature</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermodynamics, mechanics etc. For energy applications</subject><subject>Turbines</subject><subject>Working fluids</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkU2PFCEQhjtGE8fVv6BcjF66pegeoG-ayfqRbLJG3TOppYtZxh4YgdbMv5fJrB6VC6Ty1FuknqZ5DrwDDvLNrsMDBUrbYyc4QMdFxwfxoFmBVqIdAfTDZsV7LlshYXzcPMl5xzkXIPiqWT5TcjHtMVhiGHA-Zp9ZdPXNrtMWg7fsC4bvPhDbHO1M7JcvdywvB0p3hMWHLVvCRIlN3jlKFAo71VmOS6qRhfaVxLIkYjaGyRcfQ37aPHI4Z3p2f180N-8vv20-tlfXHz5t3l21duihtLeDE_2ESmEveq5BCC6hd73UKDTd6lHiGiaYtNNqoFqVMCiiNSJapYTtL5pX59xDij8WysXsfbY0zxgoLtlozaVUQo-VfP1PEpRSMIixX1dUnlGbYs6JnDkkv8d0NMDNyYjZmT9GzMmI4cJUI7Xx5f0MzBZnl-rSff7bLQaQdQxU7sWZcxgNblNlbr7WIMlPZz3wSrw9E1SX99NTMtl6qgonn8gWM0X_v8_8BgiOr58</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Roy, J.P.</creator><creator>Mishra, M.K.</creator><creator>Misra, Ashok</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>20110901</creationdate><title>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</title><author>Roy, J.P. ; Mishra, M.K. ; Misra, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b4f23da77a323081220613f368a28eb896a51d1d8f874e68a6147ee5aaac772c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Computational efficiency</topic><topic>computers</topic><topic>Computing time</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>heat</topic><topic>Heat source temperatures</topic><topic>Heat sources</topic><topic>Inlet temperature</topic><topic>Irreversibility</topic><topic>mass flow</topic><topic>Organic Rankine Cycle</topic><topic>Parametric optimization</topic><topic>Performance analysis</topic><topic>Properties and use of thermal fluids</topic><topic>Rankine cycle</topic><topic>Refrigerants</topic><topic>Refrigerating engineering</topic><topic>Refrigerating engineering. Cryogenics. Food conservation</topic><topic>Superheating</topic><topic>temperature</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermodynamics, mechanics etc. For energy applications</topic><topic>Turbines</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, J.P.</creatorcontrib><creatorcontrib>Mishra, M.K.</creatorcontrib><creatorcontrib>Misra, Ashok</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, J.P.</au><au>Mishra, M.K.</au><au>Misra, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions</atitle><jtitle>Applied energy</jtitle><date>2011-09-01</date><risdate>2011</risdate><volume>88</volume><issue>9</issue><spage>2995</spage><epage>3004</epage><pages>2995-3004</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>► Analysis of ORC using R-12, R-123, R-134a and R-717 with isobaric superheating. ► Examined performances under fixed and variable heat source temperature conditions. ► For variable heat source, the temperature of heat source is kept 15
K above TIT. ► Compared efficiencies, irreversibility, work output etc. with increase in TIT. ► R-123 produces the maximum efficiencies with minimum irreversibility.
This paper presents an analysis of non-regenerative Organic Rankine Cycle (ORC), based on the parametric optimization, using R-12, R-123, R-134a and R-717 as working fluids superheated at constant pressure. A computer programme has been developed to parametrically optimize and compare the system and second law efficiency, irreversibility of the system, availability ratio, work output, mass flow rate with increase in turbine inlet temperature (TIT) under different heat source temperature conditions. The calculated results reveal that R-123 produces the maximum efficiencies and turbine work output with minimum irreversibility for employed constant as well as variable heat source temperature conditions. Hence, selection of a non-regenerative ORC during superheating using R-123 as working fluid appears to be a choice system for converting low-grade heat to power.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2011.02.042</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-2619 |
ispartof | Applied energy, 2011-09, Vol.88 (9), p.2995-3004 |
issn | 0306-2619 1872-9118 |
language | eng |
recordid | cdi_proquest_miscellaneous_880667289 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Computational efficiency computers Computing time Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology heat Heat source temperatures Heat sources Inlet temperature Irreversibility mass flow Organic Rankine Cycle Parametric optimization Performance analysis Properties and use of thermal fluids Rankine cycle Refrigerants Refrigerating engineering Refrigerating engineering. Cryogenics. Food conservation Superheating temperature Theoretical studies. Data and constants. Metering Thermodynamics, mechanics etc. For energy applications Turbines Working fluids |
title | Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20an%20Organic%20Rankine%20Cycle%20with%20superheating%20under%20different%20heat%20source%20temperature%20conditions&rft.jtitle=Applied%20energy&rft.au=Roy,%20J.P.&rft.date=2011-09-01&rft.volume=88&rft.issue=9&rft.spage=2995&rft.epage=3004&rft.pages=2995-3004&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2011.02.042&rft_dat=%3Cproquest_cross%3E1777142935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777142935&rft_id=info:pmid/&rft_els_id=S0306261911001541&rfr_iscdi=true |