High frequency piezoelectric MEMS ultrasound transducers
High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electron...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2430 |
---|---|
container_issue | 12 |
container_start_page | 2422 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 54 |
creator | Mina, I.G. Hyunsoo Kim Insoo Kim Sung Kyu Park Kyusun Choi Jackson, T.N. Tutwiler, R.L. Trolier-McKinstry, S. |
description | High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory. |
doi_str_mv | 10.1109/TUFFC.2007.555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880665517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4430019</ieee_id><sourcerecordid>2334986351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EgvKxsiChCAmYUs6xndgjqiggUTFQZiu5XCAoTYrdDOXX49IKJAaYbNmP3_Pdw9gxhyHnYK6mz-PxaJgAZEOl1BYbcJWoWBulttkAtFaxAA57bN_7NwAupUl22R7XSZYqIQZM39Uvr1Hl6L2nFpfRvKaPjhrChasxmtxMnqK-Wbjcd31bRmHT-rJHcv6Q7VR54-losx6w5_HNdHQXPzze3o-uH2IUUi9ilMhTMIUBbUoqTA46A64hU5hRQaBQCIUynJfcVCglT2VRolCUZylHJQ7Y5Tp37rrwR7-ws9ojNU3eUtd7qzWkqVI8C-TFn6QIzWcmSf4Fk5CogfMAnv0C37retaFdq1MZkrRclR2uIXSd944qO3f1LHdLy8GuHNkvR3blyAZH4cHpJrUvZlT-4BspATjfALnHvKnC0LH2P5wxYX5iFXSy5moi-r6WUgTRRnwCJkegBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864223847</pqid></control><display><type>article</type><title>High frequency piezoelectric MEMS ultrasound transducers</title><source>IEEE Electronic Library (IEL)</source><creator>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</creator><creatorcontrib>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</creatorcontrib><description>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2007.555</identifier><identifier>PMID: 18276533</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Arrays ; Coupling circuits ; Electric circuits ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Frequency ; Fundamental areas of phenomenology (including applications) ; High-resolution imaging ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Lead zirconate titanates ; Microelectrodes ; Micromechanical devices ; Miniaturization ; Physics ; Piezoelectric films ; Piezoelectric transducers ; Piezoelectricity ; Prototypes ; Reproducibility of Results ; Semiconductors ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted - instrumentation ; Thin films ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic imaging ; Ultrasonic transducer arrays ; Ultrasonic transducers ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</citedby><cites>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4430019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23928,23929,25138,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4430019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19980735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18276533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mina, I.G.</creatorcontrib><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Insoo Kim</creatorcontrib><creatorcontrib>Sung Kyu Park</creatorcontrib><creatorcontrib>Kyusun Choi</creatorcontrib><creatorcontrib>Jackson, T.N.</creatorcontrib><creatorcontrib>Tutwiler, R.L.</creatorcontrib><creatorcontrib>Trolier-McKinstry, S.</creatorcontrib><title>High frequency piezoelectric MEMS ultrasound transducers</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Coupling circuits</subject><subject>Electric circuits</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High-resolution imaging</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Lead zirconate titanates</subject><subject>Microelectrodes</subject><subject>Micromechanical devices</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Piezoelectric films</subject><subject>Piezoelectric transducers</subject><subject>Piezoelectricity</subject><subject>Prototypes</subject><subject>Reproducibility of Results</subject><subject>Semiconductors</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Thin films</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic transducer arrays</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EgvKxsiChCAmYUs6xndgjqiggUTFQZiu5XCAoTYrdDOXX49IKJAaYbNmP3_Pdw9gxhyHnYK6mz-PxaJgAZEOl1BYbcJWoWBulttkAtFaxAA57bN_7NwAupUl22R7XSZYqIQZM39Uvr1Hl6L2nFpfRvKaPjhrChasxmtxMnqK-Wbjcd31bRmHT-rJHcv6Q7VR54-losx6w5_HNdHQXPzze3o-uH2IUUi9ilMhTMIUBbUoqTA46A64hU5hRQaBQCIUynJfcVCglT2VRolCUZylHJQ7Y5Tp37rrwR7-ws9ojNU3eUtd7qzWkqVI8C-TFn6QIzWcmSf4Fk5CogfMAnv0C37retaFdq1MZkrRclR2uIXSd944qO3f1LHdLy8GuHNkvR3blyAZH4cHpJrUvZlT-4BspATjfALnHvKnC0LH2P5wxYX5iFXSy5moi-r6WUgTRRnwCJkegBA</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Mina, I.G.</creator><creator>Hyunsoo Kim</creator><creator>Insoo Kim</creator><creator>Sung Kyu Park</creator><creator>Kyusun Choi</creator><creator>Jackson, T.N.</creator><creator>Tutwiler, R.L.</creator><creator>Trolier-McKinstry, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>200712</creationdate><title>High frequency piezoelectric MEMS ultrasound transducers</title><author>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Coupling circuits</topic><topic>Electric circuits</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High-resolution imaging</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Lead zirconate titanates</topic><topic>Microelectrodes</topic><topic>Micromechanical devices</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Piezoelectric films</topic><topic>Piezoelectric transducers</topic><topic>Piezoelectricity</topic><topic>Prototypes</topic><topic>Reproducibility of Results</topic><topic>Semiconductors</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Thin films</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic transducer arrays</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mina, I.G.</creatorcontrib><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Insoo Kim</creatorcontrib><creatorcontrib>Sung Kyu Park</creatorcontrib><creatorcontrib>Kyusun Choi</creatorcontrib><creatorcontrib>Jackson, T.N.</creatorcontrib><creatorcontrib>Tutwiler, R.L.</creatorcontrib><creatorcontrib>Trolier-McKinstry, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mina, I.G.</au><au>Hyunsoo Kim</au><au>Insoo Kim</au><au>Sung Kyu Park</au><au>Kyusun Choi</au><au>Jackson, T.N.</au><au>Tutwiler, R.L.</au><au>Trolier-McKinstry, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High frequency piezoelectric MEMS ultrasound transducers</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2007-12</date><risdate>2007</risdate><volume>54</volume><issue>12</issue><spage>2422</spage><epage>2430</epage><pages>2422-2430</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18276533</pmid><doi>10.1109/TUFFC.2007.555</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_880665517 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Arrays Coupling circuits Electric circuits Electrochemistry - instrumentation Electrochemistry - methods Electronics Equipment Design Equipment Failure Analysis Exact sciences and technology Frequency Fundamental areas of phenomenology (including applications) High-resolution imaging Image Enhancement - instrumentation Image Enhancement - methods Lead zirconate titanates Microelectrodes Micromechanical devices Miniaturization Physics Piezoelectric films Piezoelectric transducers Piezoelectricity Prototypes Reproducibility of Results Semiconductors Sensitivity and Specificity Signal Processing, Computer-Assisted - instrumentation Thin films Transducers Transduction acoustical devices for the generation and reproduction of sound Ultrasonic imaging Ultrasonic transducer arrays Ultrasonic transducers Ultrasonography - instrumentation Ultrasonography - methods Ultrasound |
title | High frequency piezoelectric MEMS ultrasound transducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20frequency%20piezoelectric%20MEMS%20ultrasound%20transducers&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Mina,%20I.G.&rft.date=2007-12&rft.volume=54&rft.issue=12&rft.spage=2422&rft.epage=2430&rft.pages=2422-2430&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2007.555&rft_dat=%3Cproquest_RIE%3E2334986351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864223847&rft_id=info:pmid/18276533&rft_ieee_id=4430019&rfr_iscdi=true |