High frequency piezoelectric MEMS ultrasound transducers

High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430
Hauptverfasser: Mina, I.G., Hyunsoo Kim, Insoo Kim, Sung Kyu Park, Kyusun Choi, Jackson, T.N., Tutwiler, R.L., Trolier-McKinstry, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2430
container_issue 12
container_start_page 2422
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 54
creator Mina, I.G.
Hyunsoo Kim
Insoo Kim
Sung Kyu Park
Kyusun Choi
Jackson, T.N.
Tutwiler, R.L.
Trolier-McKinstry, S.
description High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.
doi_str_mv 10.1109/TUFFC.2007.555
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880665517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4430019</ieee_id><sourcerecordid>2334986351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EgvKxsiChCAmYUs6xndgjqiggUTFQZiu5XCAoTYrdDOXX49IKJAaYbNmP3_Pdw9gxhyHnYK6mz-PxaJgAZEOl1BYbcJWoWBulttkAtFaxAA57bN_7NwAupUl22R7XSZYqIQZM39Uvr1Hl6L2nFpfRvKaPjhrChasxmtxMnqK-Wbjcd31bRmHT-rJHcv6Q7VR54-losx6w5_HNdHQXPzze3o-uH2IUUi9ilMhTMIUBbUoqTA46A64hU5hRQaBQCIUynJfcVCglT2VRolCUZylHJQ7Y5Tp37rrwR7-ws9ojNU3eUtd7qzWkqVI8C-TFn6QIzWcmSf4Fk5CogfMAnv0C37retaFdq1MZkrRclR2uIXSd944qO3f1LHdLy8GuHNkvR3blyAZH4cHpJrUvZlT-4BspATjfALnHvKnC0LH2P5wxYX5iFXSy5moi-r6WUgTRRnwCJkegBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864223847</pqid></control><display><type>article</type><title>High frequency piezoelectric MEMS ultrasound transducers</title><source>IEEE Electronic Library (IEL)</source><creator>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</creator><creatorcontrib>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</creatorcontrib><description>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2007.555</identifier><identifier>PMID: 18276533</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Arrays ; Coupling circuits ; Electric circuits ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Frequency ; Fundamental areas of phenomenology (including applications) ; High-resolution imaging ; Image Enhancement - instrumentation ; Image Enhancement - methods ; Lead zirconate titanates ; Microelectrodes ; Micromechanical devices ; Miniaturization ; Physics ; Piezoelectric films ; Piezoelectric transducers ; Piezoelectricity ; Prototypes ; Reproducibility of Results ; Semiconductors ; Sensitivity and Specificity ; Signal Processing, Computer-Assisted - instrumentation ; Thin films ; Transducers ; Transduction; acoustical devices for the generation and reproduction of sound ; Ultrasonic imaging ; Ultrasonic transducer arrays ; Ultrasonic transducers ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ultrasound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</citedby><cites>FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4430019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23928,23929,25138,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4430019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19980735$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18276533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mina, I.G.</creatorcontrib><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Insoo Kim</creatorcontrib><creatorcontrib>Sung Kyu Park</creatorcontrib><creatorcontrib>Kyusun Choi</creatorcontrib><creatorcontrib>Jackson, T.N.</creatorcontrib><creatorcontrib>Tutwiler, R.L.</creatorcontrib><creatorcontrib>Trolier-McKinstry, S.</creatorcontrib><title>High frequency piezoelectric MEMS ultrasound transducers</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Coupling circuits</subject><subject>Electric circuits</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Frequency</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High-resolution imaging</subject><subject>Image Enhancement - instrumentation</subject><subject>Image Enhancement - methods</subject><subject>Lead zirconate titanates</subject><subject>Microelectrodes</subject><subject>Micromechanical devices</subject><subject>Miniaturization</subject><subject>Physics</subject><subject>Piezoelectric films</subject><subject>Piezoelectric transducers</subject><subject>Piezoelectricity</subject><subject>Prototypes</subject><subject>Reproducibility of Results</subject><subject>Semiconductors</subject><subject>Sensitivity and Specificity</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Thin films</subject><subject>Transducers</subject><subject>Transduction; acoustical devices for the generation and reproduction of sound</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic transducer arrays</subject><subject>Ultrasonic transducers</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkT1PwzAQhi0EgvKxsiChCAmYUs6xndgjqiggUTFQZiu5XCAoTYrdDOXX49IKJAaYbNmP3_Pdw9gxhyHnYK6mz-PxaJgAZEOl1BYbcJWoWBulttkAtFaxAA57bN_7NwAupUl22R7XSZYqIQZM39Uvr1Hl6L2nFpfRvKaPjhrChasxmtxMnqK-Wbjcd31bRmHT-rJHcv6Q7VR54-losx6w5_HNdHQXPzze3o-uH2IUUi9ilMhTMIUBbUoqTA46A64hU5hRQaBQCIUynJfcVCglT2VRolCUZylHJQ7Y5Tp37rrwR7-ws9ojNU3eUtd7qzWkqVI8C-TFn6QIzWcmSf4Fk5CogfMAnv0C37retaFdq1MZkrRclR2uIXSd944qO3f1LHdLy8GuHNkvR3blyAZH4cHpJrUvZlT-4BspATjfALnHvKnC0LH2P5wxYX5iFXSy5moi-r6WUgTRRnwCJkegBA</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Mina, I.G.</creator><creator>Hyunsoo Kim</creator><creator>Insoo Kim</creator><creator>Sung Kyu Park</creator><creator>Kyusun Choi</creator><creator>Jackson, T.N.</creator><creator>Tutwiler, R.L.</creator><creator>Trolier-McKinstry, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>200712</creationdate><title>High frequency piezoelectric MEMS ultrasound transducers</title><author>Mina, I.G. ; Hyunsoo Kim ; Insoo Kim ; Sung Kyu Park ; Kyusun Choi ; Jackson, T.N. ; Tutwiler, R.L. ; Trolier-McKinstry, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c4c1609b9089deb9a087018075c7ebe05c335c49a0d19fc44164bdc35ea761c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Coupling circuits</topic><topic>Electric circuits</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Frequency</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High-resolution imaging</topic><topic>Image Enhancement - instrumentation</topic><topic>Image Enhancement - methods</topic><topic>Lead zirconate titanates</topic><topic>Microelectrodes</topic><topic>Micromechanical devices</topic><topic>Miniaturization</topic><topic>Physics</topic><topic>Piezoelectric films</topic><topic>Piezoelectric transducers</topic><topic>Piezoelectricity</topic><topic>Prototypes</topic><topic>Reproducibility of Results</topic><topic>Semiconductors</topic><topic>Sensitivity and Specificity</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Thin films</topic><topic>Transducers</topic><topic>Transduction; acoustical devices for the generation and reproduction of sound</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic transducer arrays</topic><topic>Ultrasonic transducers</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mina, I.G.</creatorcontrib><creatorcontrib>Hyunsoo Kim</creatorcontrib><creatorcontrib>Insoo Kim</creatorcontrib><creatorcontrib>Sung Kyu Park</creatorcontrib><creatorcontrib>Kyusun Choi</creatorcontrib><creatorcontrib>Jackson, T.N.</creatorcontrib><creatorcontrib>Tutwiler, R.L.</creatorcontrib><creatorcontrib>Trolier-McKinstry, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mina, I.G.</au><au>Hyunsoo Kim</au><au>Insoo Kim</au><au>Sung Kyu Park</au><au>Kyusun Choi</au><au>Jackson, T.N.</au><au>Tutwiler, R.L.</au><au>Trolier-McKinstry, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High frequency piezoelectric MEMS ultrasound transducers</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2007-12</date><risdate>2007</risdate><volume>54</volume><issue>12</issue><spage>2422</spage><epage>2430</epage><pages>2422-2430</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>High-frequency ultrasound array transducers using piezoelectric thin films on larger structures are being developed for high-resolution imaging systems. The increase in resolution is achieved by a simultaneous increase in operating frequency (30 MHz to about 1 GHz) and close coupling of the electronic circuitry. Two different processing methods were explored to fabricate array transducers. In one implementation, a xylophone bar transducer was prototyped, using thin film PbZr 0.52 Ti 0.48 O 3 (PZT) as the active piezoelectric layer. In the other, the piezoelectric transducer was prepared by mist deposition of PZT films over electroplated Ni posts. Because the PZT films are excited through the film thickness, the drive voltages of these transducers are low, and close coupling of the electronic circuitry is possible. A complementary metal-oxide-semiconductor (CMOS) transceiver chip for a 16-element array was fabricated in 0.35-mum process technology. The ultrasound front-end chip contains beam-forming electronics, receiver circuitry, and analog-to-digital converters with 3-Kbyte on-chip buffer memory.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18276533</pmid><doi>10.1109/TUFFC.2007.555</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2007-12, Vol.54 (12), p.2422-2430
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_880665517
source IEEE Electronic Library (IEL)
subjects Acoustics
Arrays
Coupling circuits
Electric circuits
Electrochemistry - instrumentation
Electrochemistry - methods
Electronics
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Frequency
Fundamental areas of phenomenology (including applications)
High-resolution imaging
Image Enhancement - instrumentation
Image Enhancement - methods
Lead zirconate titanates
Microelectrodes
Micromechanical devices
Miniaturization
Physics
Piezoelectric films
Piezoelectric transducers
Piezoelectricity
Prototypes
Reproducibility of Results
Semiconductors
Sensitivity and Specificity
Signal Processing, Computer-Assisted - instrumentation
Thin films
Transducers
Transduction
acoustical devices for the generation and reproduction of sound
Ultrasonic imaging
Ultrasonic transducer arrays
Ultrasonic transducers
Ultrasonography - instrumentation
Ultrasonography - methods
Ultrasound
title High frequency piezoelectric MEMS ultrasound transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20frequency%20piezoelectric%20MEMS%20ultrasound%20transducers&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Mina,%20I.G.&rft.date=2007-12&rft.volume=54&rft.issue=12&rft.spage=2422&rft.epage=2430&rft.pages=2422-2430&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2007.555&rft_dat=%3Cproquest_RIE%3E2334986351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864223847&rft_id=info:pmid/18276533&rft_ieee_id=4430019&rfr_iscdi=true