Modelling mobility: A discrete revolution

We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ad hoc networks 2011-08, Vol.9 (6), p.998-1014
Hauptverfasser: Clementi, Andrea, Monti, Angelo, Silvestri, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 6
container_start_page 998
container_title Ad hoc networks
container_volume 9
creator Clementi, Andrea
Monti, Angelo
Silvestri, Riccardo
description We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones. Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.
doi_str_mv 10.1016/j.adhoc.2010.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880664456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510001356</els_id><sourcerecordid>880664456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFxyQxwS1nHsOEgcqoo_qYgLnK3EXoOrNC52Wqlvj0sRR067Wn2zmhlCLikUFKi4WRat-fS6KCFdoCkAyiMyobyGXNaUHf_twE_JWYzLBDQJnpDrF2-w793wka1853o37m6zWWZc1AFHzAJufb8ZnR_OyYlt-4gXv3NK3h_u3-ZP-eL18Xk-W-SaSRjzTtdlCYhcYo3SVqYTlllKUWvJG1uyknUVcN02yA01le4sliA5FVIILjibkqvD33XwXxuMo1olM8ljO6DfRCUlCFFVXCSSHUgdfIwBrVoHt2rDTlFQ-17UUv30ova9KGhUip1UdwcVphBbh0FF7XDQaFxAPSrj3b_6bzqea64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880664456</pqid></control><display><type>article</type><title>Modelling mobility: A discrete revolution</title><source>Access via ScienceDirect (Elsevier)</source><creator>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</creator><creatorcontrib>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</creatorcontrib><description>We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones. Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.09.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Concretes ; Counting ; Discrete Markov chains ; Markov processes ; Mathematical analysis ; Mathematical models ; Mobile ad-hoc networks ; Mobile communication systems ; Models of mobility ; Tasks</subject><ispartof>Ad hoc networks, 2011-08, Vol.9 (6), p.998-1014</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</citedby><cites>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Monti, Angelo</creatorcontrib><creatorcontrib>Silvestri, Riccardo</creatorcontrib><title>Modelling mobility: A discrete revolution</title><title>Ad hoc networks</title><description>We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones. Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</description><subject>Concretes</subject><subject>Counting</subject><subject>Discrete Markov chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mobile ad-hoc networks</subject><subject>Mobile communication systems</subject><subject>Models of mobility</subject><subject>Tasks</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFxyQxwS1nHsOEgcqoo_qYgLnK3EXoOrNC52Wqlvj0sRR067Wn2zmhlCLikUFKi4WRat-fS6KCFdoCkAyiMyobyGXNaUHf_twE_JWYzLBDQJnpDrF2-w793wka1853o37m6zWWZc1AFHzAJufb8ZnR_OyYlt-4gXv3NK3h_u3-ZP-eL18Xk-W-SaSRjzTtdlCYhcYo3SVqYTlllKUWvJG1uyknUVcN02yA01le4sliA5FVIILjibkqvD33XwXxuMo1olM8ljO6DfRCUlCFFVXCSSHUgdfIwBrVoHt2rDTlFQ-17UUv30ova9KGhUip1UdwcVphBbh0FF7XDQaFxAPSrj3b_6bzqea64</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Clementi, Andrea</creator><creator>Monti, Angelo</creator><creator>Silvestri, Riccardo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Modelling mobility: A discrete revolution</title><author>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Concretes</topic><topic>Counting</topic><topic>Discrete Markov chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mobile ad-hoc networks</topic><topic>Mobile communication systems</topic><topic>Models of mobility</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Monti, Angelo</creatorcontrib><creatorcontrib>Silvestri, Riccardo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clementi, Andrea</au><au>Monti, Angelo</au><au>Silvestri, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling mobility: A discrete revolution</atitle><jtitle>Ad hoc networks</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>9</volume><issue>6</issue><spage>998</spage><epage>1014</epage><pages>998-1014</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones. Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.09.002</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-8705
ispartof Ad hoc networks, 2011-08, Vol.9 (6), p.998-1014
issn 1570-8705
1570-8713
language eng
recordid cdi_proquest_miscellaneous_880664456
source Access via ScienceDirect (Elsevier)
subjects Concretes
Counting
Discrete Markov chains
Markov processes
Mathematical analysis
Mathematical models
Mobile ad-hoc networks
Mobile communication systems
Models of mobility
Tasks
title Modelling mobility: A discrete revolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20mobility:%20A%20discrete%20revolution&rft.jtitle=Ad%20hoc%20networks&rft.au=Clementi,%20Andrea&rft.date=2011-08-01&rft.volume=9&rft.issue=6&rft.spage=998&rft.epage=1014&rft.pages=998-1014&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.09.002&rft_dat=%3Cproquest_cross%3E880664456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880664456&rft_id=info:pmid/&rft_els_id=S1570870510001356&rfr_iscdi=true