Modelling mobility: A discrete revolution
We introduce a new approach to model and analyze mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the Markov Trace model. It can be viewed as the discrete version of the Random Trip model: including all variants of the Random Way-Point model [15]. We...
Gespeichert in:
Veröffentlicht in: | Ad hoc networks 2011-08, Vol.9 (6), p.998-1014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1014 |
---|---|
container_issue | 6 |
container_start_page | 998 |
container_title | Ad hoc networks |
container_volume | 9 |
creator | Clementi, Andrea Monti, Angelo Silvestri, Riccardo |
description | We introduce a new approach to model and analyze
mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the
Markov Trace model. It can be viewed as the discrete version of the
Random Trip model: including all variants of the
Random Way-Point model
[15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a
per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the
Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones.
Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well. |
doi_str_mv | 10.1016/j.adhoc.2010.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880664456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510001356</els_id><sourcerecordid>880664456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFxyQxwS1nHsOEgcqoo_qYgLnK3EXoOrNC52Wqlvj0sRR067Wn2zmhlCLikUFKi4WRat-fS6KCFdoCkAyiMyobyGXNaUHf_twE_JWYzLBDQJnpDrF2-w793wka1853o37m6zWWZc1AFHzAJufb8ZnR_OyYlt-4gXv3NK3h_u3-ZP-eL18Xk-W-SaSRjzTtdlCYhcYo3SVqYTlllKUWvJG1uyknUVcN02yA01le4sliA5FVIILjibkqvD33XwXxuMo1olM8ljO6DfRCUlCFFVXCSSHUgdfIwBrVoHt2rDTlFQ-17UUv30ova9KGhUip1UdwcVphBbh0FF7XDQaFxAPSrj3b_6bzqea64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880664456</pqid></control><display><type>article</type><title>Modelling mobility: A discrete revolution</title><source>Access via ScienceDirect (Elsevier)</source><creator>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</creator><creatorcontrib>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</creatorcontrib><description>We introduce a new approach to model and analyze
mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the
Markov Trace model. It can be viewed as the discrete version of the
Random Trip model: including all variants of the
Random Way-Point model
[15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a
per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the
Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones.
Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.09.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Concretes ; Counting ; Discrete Markov chains ; Markov processes ; Mathematical analysis ; Mathematical models ; Mobile ad-hoc networks ; Mobile communication systems ; Models of mobility ; Tasks</subject><ispartof>Ad hoc networks, 2011-08, Vol.9 (6), p.998-1014</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</citedby><cites>FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Monti, Angelo</creatorcontrib><creatorcontrib>Silvestri, Riccardo</creatorcontrib><title>Modelling mobility: A discrete revolution</title><title>Ad hoc networks</title><description>We introduce a new approach to model and analyze
mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the
Markov Trace model. It can be viewed as the discrete version of the
Random Trip model: including all variants of the
Random Way-Point model
[15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a
per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the
Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones.
Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</description><subject>Concretes</subject><subject>Counting</subject><subject>Discrete Markov chains</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mobile ad-hoc networks</subject><subject>Mobile communication systems</subject><subject>Models of mobility</subject><subject>Tasks</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFxyQxwS1nHsOEgcqoo_qYgLnK3EXoOrNC52Wqlvj0sRR067Wn2zmhlCLikUFKi4WRat-fS6KCFdoCkAyiMyobyGXNaUHf_twE_JWYzLBDQJnpDrF2-w793wka1853o37m6zWWZc1AFHzAJufb8ZnR_OyYlt-4gXv3NK3h_u3-ZP-eL18Xk-W-SaSRjzTtdlCYhcYo3SVqYTlllKUWvJG1uyknUVcN02yA01le4sliA5FVIILjibkqvD33XwXxuMo1olM8ljO6DfRCUlCFFVXCSSHUgdfIwBrVoHt2rDTlFQ-17UUv30ova9KGhUip1UdwcVphBbh0FF7XDQaFxAPSrj3b_6bzqea64</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Clementi, Andrea</creator><creator>Monti, Angelo</creator><creator>Silvestri, Riccardo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Modelling mobility: A discrete revolution</title><author>Clementi, Andrea ; Monti, Angelo ; Silvestri, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bc7220ee58e7e8f4db6f3f11ecc859f2323b405ca9e5d1d4cbfe2085168665653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Concretes</topic><topic>Counting</topic><topic>Discrete Markov chains</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mobile ad-hoc networks</topic><topic>Mobile communication systems</topic><topic>Models of mobility</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clementi, Andrea</creatorcontrib><creatorcontrib>Monti, Angelo</creatorcontrib><creatorcontrib>Silvestri, Riccardo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clementi, Andrea</au><au>Monti, Angelo</au><au>Silvestri, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling mobility: A discrete revolution</atitle><jtitle>Ad hoc networks</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>9</volume><issue>6</issue><spage>998</spage><epage>1014</epage><pages>998-1014</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>We introduce a new approach to model and analyze
mobility. It is fully based on discrete mathematics and yields a class of mobility models, called the
Markov Trace model. It can be viewed as the discrete version of the
Random Trip model: including all variants of the
Random Way-Point model
[15]. We derive fundamental properties and explicit analytical formulas for the stationary probability distributions yielded by the Markov Trace model. Besides having a
per-se interest, such results can be exploited to compute formulas and properties for concrete cases by just applying counting arguments. We apply the above general results to the discrete version of the
Manhattan Random Way-Point. We get explicit formulas for the total stationary distribution and for two important conditional distributions: the agent spatial and the agent destination ones.
Our method makes the analysis of complex mobile systems a feasible task. As a further evidence of this important fact, we model a complex vehicular-mobile system over a set of crossing streets. Several concrete issues are implemented such as parking zones, traffic lights, and variable vehicle speeds. By using a modular version of the Markov Trace model, we get explicit formulas for the stationary distributions yielded by this vehicular-mobile model as well.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.09.002</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-8705 |
ispartof | Ad hoc networks, 2011-08, Vol.9 (6), p.998-1014 |
issn | 1570-8705 1570-8713 |
language | eng |
recordid | cdi_proquest_miscellaneous_880664456 |
source | Access via ScienceDirect (Elsevier) |
subjects | Concretes Counting Discrete Markov chains Markov processes Mathematical analysis Mathematical models Mobile ad-hoc networks Mobile communication systems Models of mobility Tasks |
title | Modelling mobility: A discrete revolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20mobility:%20A%20discrete%20revolution&rft.jtitle=Ad%20hoc%20networks&rft.au=Clementi,%20Andrea&rft.date=2011-08-01&rft.volume=9&rft.issue=6&rft.spage=998&rft.epage=1014&rft.pages=998-1014&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.09.002&rft_dat=%3Cproquest_cross%3E880664456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880664456&rft_id=info:pmid/&rft_els_id=S1570870510001356&rfr_iscdi=true |