Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models
Abstract Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trab...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2011-05, Vol.44 (8), p.1566-1572 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1572 |
---|---|
container_issue | 8 |
container_start_page | 1566 |
container_title | Journal of biomechanics |
container_volume | 44 |
creator | Vanderoost, Jef Jaecques, Siegfried V.N Van der Perre, Georges Boonen, Steven D'hooge, Jan Lauriks, Walter van Lenthe, G.Harry |
description | Abstract Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4 mm×4 mm×4 mm; 30 μm voxel size; BIOMED I project) in three orthogonal directions using the beam–shell models and using large-scale voxel models that served as the gold standard. Excellent agreement ( R2 =0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam–shell models. In contrast to earlier skeleton-based beam models, the novel beam–shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures. |
doi_str_mv | 10.1016/j.jbiomech.2011.02.082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880664299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929011001746</els_id><sourcerecordid>864780742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-d43bd9c6bfd8f2182d694ac029989b20ba2be947bd7b08e5c283ec4e62ba9df73</originalsourceid><addsrcrecordid>eNqFks1u1TAQhSMEopfCK1SWEGKVYDu-jr1BoIpSpEosgLXlnwl1SOyLnVTqru_AG_IkOL23VOqmK1vWd45n5kxVnRDcEEz4u6EZjI8T2MuGYkIaTBss6JNqQ0TX1rQV-Gm1wZiSWlKJj6oXOQ8Y44518nl1RAkjjNNuU92c6TwjHRzS1i5Jz4DyDqyfINS3l95blP20jHr2MaDYozlpA7Y8JGRiAARjsSjUFN0yLhkt2YefKMQrGJEBPf29-ZMvYRxR74OfVx6K-7zyMOaX1bNejxleHc7j6sfZp--n5_XF189fTj9e1HZL6Fw71honLTe9Ez0lgjoumbaYSimkodhoakCyzrjOYAFbS0ULlgGnRkvXd-1x9Xbvu0vx9wJ5VpPPtpSlA8QlKyEw56zYPU5y1okySVrI1w_IIS4plDYUwS2TvGvJtlB8T9kUc07Qq13yk07XBVJrmGpQd2GqNUyFqSphFuHJwX4xE7j_srv0CvDmAOhs9dgnHazP9xwjgpAtL9yHPVfmDVceksrWQ7DgfAI7Kxf947W8f2BhxxJn-fUXXEO-71vlIlDf1tVbN48QjEnHePsPCpTYKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034967315</pqid></control><display><type>article</type><title>Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Vanderoost, Jef ; Jaecques, Siegfried V.N ; Van der Perre, Georges ; Boonen, Steven ; D'hooge, Jan ; Lauriks, Walter ; van Lenthe, G.Harry</creator><creatorcontrib>Vanderoost, Jef ; Jaecques, Siegfried V.N ; Van der Perre, Georges ; Boonen, Steven ; D'hooge, Jan ; Lauriks, Walter ; van Lenthe, G.Harry</creatorcontrib><description>Abstract Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4 mm×4 mm×4 mm; 30 μm voxel size; BIOMED I project) in three orthogonal directions using the beam–shell models and using large-scale voxel models that served as the gold standard. Excellent agreement ( R2 =0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam–shell models. In contrast to earlier skeleton-based beam models, the novel beam–shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2011.02.082</identifier><identifier>PMID: 21414627</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Biological and medical sciences ; Biomechanical Phenomena ; Biomechanics. Biorheology ; Bone and Bones - anatomy & histology ; Bone and Bones - pathology ; Bone stiffness ; Bones ; Classification ; Computers ; Elasticity ; Failure analysis ; FE modeling ; Femur - pathology ; Finite Element Analysis ; Fundamental and applied biological sciences. Psychology ; Humans ; Materials Testing ; Micro-computed tomography ; Molecular Conformation ; Osteoporosis ; Physical Medicine and Rehabilitation ; Simulation ; Skeleton and joints ; Software ; Spine - pathology ; Studies ; Time Factors ; Tissues, organs and organisms biophysics ; Trabecular bone ; Vertebrates: osteoarticular system, musculoskeletal system ; X-Ray Microtomography - methods</subject><ispartof>Journal of biomechanics, 2011-05, Vol.44 (8), p.1566-1572</ispartof><rights>Elsevier Ltd</rights><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-d43bd9c6bfd8f2182d694ac029989b20ba2be947bd7b08e5c283ec4e62ba9df73</citedby><cites>FETCH-LOGICAL-c512t-d43bd9c6bfd8f2182d694ac029989b20ba2be947bd7b08e5c283ec4e62ba9df73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1034967315?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004,64394,64396,64398,72478</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24181156$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21414627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderoost, Jef</creatorcontrib><creatorcontrib>Jaecques, Siegfried V.N</creatorcontrib><creatorcontrib>Van der Perre, Georges</creatorcontrib><creatorcontrib>Boonen, Steven</creatorcontrib><creatorcontrib>D'hooge, Jan</creatorcontrib><creatorcontrib>Lauriks, Walter</creatorcontrib><creatorcontrib>van Lenthe, G.Harry</creatorcontrib><title>Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4 mm×4 mm×4 mm; 30 μm voxel size; BIOMED I project) in three orthogonal directions using the beam–shell models and using large-scale voxel models that served as the gold standard. Excellent agreement ( R2 =0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam–shell models. In contrast to earlier skeleton-based beam models, the novel beam–shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics. Biorheology</subject><subject>Bone and Bones - anatomy & histology</subject><subject>Bone and Bones - pathology</subject><subject>Bone stiffness</subject><subject>Bones</subject><subject>Classification</subject><subject>Computers</subject><subject>Elasticity</subject><subject>Failure analysis</subject><subject>FE modeling</subject><subject>Femur - pathology</subject><subject>Finite Element Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Micro-computed tomography</subject><subject>Molecular Conformation</subject><subject>Osteoporosis</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Simulation</subject><subject>Skeleton and joints</subject><subject>Software</subject><subject>Spine - pathology</subject><subject>Studies</subject><subject>Time Factors</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Trabecular bone</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><subject>X-Ray Microtomography - methods</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFks1u1TAQhSMEopfCK1SWEGKVYDu-jr1BoIpSpEosgLXlnwl1SOyLnVTqru_AG_IkOL23VOqmK1vWd45n5kxVnRDcEEz4u6EZjI8T2MuGYkIaTBss6JNqQ0TX1rQV-Gm1wZiSWlKJj6oXOQ8Y44518nl1RAkjjNNuU92c6TwjHRzS1i5Jz4DyDqyfINS3l95blP20jHr2MaDYozlpA7Y8JGRiAARjsSjUFN0yLhkt2YefKMQrGJEBPf29-ZMvYRxR74OfVx6K-7zyMOaX1bNejxleHc7j6sfZp--n5_XF189fTj9e1HZL6Fw71honLTe9Ez0lgjoumbaYSimkodhoakCyzrjOYAFbS0ULlgGnRkvXd-1x9Xbvu0vx9wJ5VpPPtpSlA8QlKyEw56zYPU5y1okySVrI1w_IIS4plDYUwS2TvGvJtlB8T9kUc07Qq13yk07XBVJrmGpQd2GqNUyFqSphFuHJwX4xE7j_srv0CvDmAOhs9dgnHazP9xwjgpAtL9yHPVfmDVceksrWQ7DgfAI7Kxf947W8f2BhxxJn-fUXXEO-71vlIlDf1tVbN48QjEnHePsPCpTYKQ</recordid><startdate>20110517</startdate><enddate>20110517</enddate><creator>Vanderoost, Jef</creator><creator>Jaecques, Siegfried V.N</creator><creator>Van der Perre, Georges</creator><creator>Boonen, Steven</creator><creator>D'hooge, Jan</creator><creator>Lauriks, Walter</creator><creator>van Lenthe, G.Harry</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20110517</creationdate><title>Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models</title><author>Vanderoost, Jef ; Jaecques, Siegfried V.N ; Van der Perre, Georges ; Boonen, Steven ; D'hooge, Jan ; Lauriks, Walter ; van Lenthe, G.Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-d43bd9c6bfd8f2182d694ac029989b20ba2be947bd7b08e5c283ec4e62ba9df73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics. Biorheology</topic><topic>Bone and Bones - anatomy & histology</topic><topic>Bone and Bones - pathology</topic><topic>Bone stiffness</topic><topic>Bones</topic><topic>Classification</topic><topic>Computers</topic><topic>Elasticity</topic><topic>Failure analysis</topic><topic>FE modeling</topic><topic>Femur - pathology</topic><topic>Finite Element Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Micro-computed tomography</topic><topic>Molecular Conformation</topic><topic>Osteoporosis</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Simulation</topic><topic>Skeleton and joints</topic><topic>Software</topic><topic>Spine - pathology</topic><topic>Studies</topic><topic>Time Factors</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Trabecular bone</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><topic>X-Ray Microtomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderoost, Jef</creatorcontrib><creatorcontrib>Jaecques, Siegfried V.N</creatorcontrib><creatorcontrib>Van der Perre, Georges</creatorcontrib><creatorcontrib>Boonen, Steven</creatorcontrib><creatorcontrib>D'hooge, Jan</creatorcontrib><creatorcontrib>Lauriks, Walter</creatorcontrib><creatorcontrib>van Lenthe, G.Harry</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderoost, Jef</au><au>Jaecques, Siegfried V.N</au><au>Van der Perre, Georges</au><au>Boonen, Steven</au><au>D'hooge, Jan</au><au>Lauriks, Walter</au><au>van Lenthe, G.Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2011-05-17</date><risdate>2011</risdate><volume>44</volume><issue>8</issue><spage>1566</spage><epage>1572</epage><pages>1566-1572</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4 mm×4 mm×4 mm; 30 μm voxel size; BIOMED I project) in three orthogonal directions using the beam–shell models and using large-scale voxel models that served as the gold standard. Excellent agreement ( R2 =0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam–shell models. In contrast to earlier skeleton-based beam models, the novel beam–shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21414627</pmid><doi>10.1016/j.jbiomech.2011.02.082</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2011-05, Vol.44 (8), p.1566-1572 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_880664299 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Algorithms Biological and medical sciences Biomechanical Phenomena Biomechanics. Biorheology Bone and Bones - anatomy & histology Bone and Bones - pathology Bone stiffness Bones Classification Computers Elasticity Failure analysis FE modeling Femur - pathology Finite Element Analysis Fundamental and applied biological sciences. Psychology Humans Materials Testing Micro-computed tomography Molecular Conformation Osteoporosis Physical Medicine and Rehabilitation Simulation Skeleton and joints Software Spine - pathology Studies Time Factors Tissues, organs and organisms biophysics Trabecular bone Vertebrates: osteoarticular system, musculoskeletal system X-Ray Microtomography - methods |
title | Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam–shell finite element models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T19%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20accurate%20specimen-specific%20simulation%20of%20trabecular%20bone%20elastic%20modulus%20using%20novel%20beam%E2%80%93shell%20finite%20element%20models&rft.jtitle=Journal%20of%20biomechanics&rft.au=Vanderoost,%20Jef&rft.date=2011-05-17&rft.volume=44&rft.issue=8&rft.spage=1566&rft.epage=1572&rft.pages=1566-1572&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2011.02.082&rft_dat=%3Cproquest_cross%3E864780742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034967315&rft_id=info:pmid/21414627&rft_els_id=S0021929011001746&rfr_iscdi=true |