Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification

A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2007-03, Vol.18 (2), p.506-519
Hauptverfasser: Kyperountas, M., Tefas, A., Pitas, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 2
container_start_page 506
container_title IEEE transaction on neural networks and learning systems
container_volume 18
creator Kyperountas, M.
Tefas, A.
Pitas, I.
description A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance
doi_str_mv 10.1109/TNN.2006.885038
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880663524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4118267</ieee_id><sourcerecordid>880663524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3bb2449c8cab211f3fb9664de2c67955c8e5608790b8316470c625e3ce6c3f513</originalsourceid><addsrcrecordid>eNp9kU1rFEEQhhtRTIyePQjSeNDTbKr6a7qPIRoVlhjYRI_NTG9N0mE-Nt2zCfrr7bCLggdPVUU9VfDyMPYaYYEI7vjy_HwhAMzCWg3SPmGH6BRWAE4-LT0oXTkh6gP2IudbAFQazHN2gLW02kh9yK5-ULy-mWnNLyIFeoiZ-PLjCe-mxFdTfx_Haz7fEF8NTd_zVTNs-jLEX8Qv0tT2NPA48rMmEP9OKXYxNHOcxpfsWdf0mV7t6xG7Ovt0efqlWn77_PX0ZFkFpWCuZNsKpVywoWkFYie71hmj1iSCqZ3WwZI2YGsHrZVoVA3BCE0ykAmy0yiP2Ifd302a7raUZz_EHKjvm5GmbfbWgikxhSrk-_-SNUhwCKKA7_4Bb6dtGksK71AIVEKYAh3voJCmnBN1fpPi0KSfHsE_ivFFjH8U43diysXb_dttO9D6L783UYA3OyAS0Z-1QrTC1PI3OBiOtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912214226</pqid></control><display><type>article</type><title>Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification</title><source>IEEE Electronic Library (IEL)</source><creator>Kyperountas, M. ; Tefas, A. ; Pitas, I.</creator><creatorcontrib>Kyperountas, M. ; Tefas, A. ; Pitas, I.</creatorcontrib><description>A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2006.885038</identifier><identifier>PMID: 17385635</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Biometrics ; Biometry - methods ; Classification ; Computer Simulation ; Discriminant Analysis ; Face ; Face - anatomy &amp; histology ; Face verification ; Humans ; Hyperplanes ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Informatics ; Information security ; Information Storage and Retrieval - methods ; Linear discriminant analysis ; linear discriminant analysis (LDA) ; Linear Models ; Neural networks ; Pattern analysis ; Pattern recognition ; Pattern Recognition, Automated - methods ; Phases ; Sample Size ; Similarity ; small sample size (SSS) problem ; Studies ; System testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.506-519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3bb2449c8cab211f3fb9664de2c67955c8e5608790b8316470c625e3ce6c3f513</citedby><cites>FETCH-LOGICAL-c440t-3bb2449c8cab211f3fb9664de2c67955c8e5608790b8316470c625e3ce6c3f513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4118267$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4118267$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17385635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyperountas, M.</creatorcontrib><creatorcontrib>Tefas, A.</creatorcontrib><creatorcontrib>Pitas, I.</creatorcontrib><title>Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Classification</subject><subject>Computer Simulation</subject><subject>Discriminant Analysis</subject><subject>Face</subject><subject>Face - anatomy &amp; histology</subject><subject>Face verification</subject><subject>Humans</subject><subject>Hyperplanes</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Informatics</subject><subject>Information security</subject><subject>Information Storage and Retrieval - methods</subject><subject>Linear discriminant analysis</subject><subject>linear discriminant analysis (LDA)</subject><subject>Linear Models</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phases</subject><subject>Sample Size</subject><subject>Similarity</subject><subject>small sample size (SSS) problem</subject><subject>Studies</subject><subject>System testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kU1rFEEQhhtRTIyePQjSeNDTbKr6a7qPIRoVlhjYRI_NTG9N0mE-Nt2zCfrr7bCLggdPVUU9VfDyMPYaYYEI7vjy_HwhAMzCWg3SPmGH6BRWAE4-LT0oXTkh6gP2IudbAFQazHN2gLW02kh9yK5-ULy-mWnNLyIFeoiZ-PLjCe-mxFdTfx_Haz7fEF8NTd_zVTNs-jLEX8Qv0tT2NPA48rMmEP9OKXYxNHOcxpfsWdf0mV7t6xG7Ovt0efqlWn77_PX0ZFkFpWCuZNsKpVywoWkFYie71hmj1iSCqZ3WwZI2YGsHrZVoVA3BCE0ykAmy0yiP2Ifd302a7raUZz_EHKjvm5GmbfbWgikxhSrk-_-SNUhwCKKA7_4Bb6dtGksK71AIVEKYAh3voJCmnBN1fpPi0KSfHsE_ivFFjH8U43diysXb_dttO9D6L783UYA3OyAS0Z-1QrTC1PI3OBiOtw</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Kyperountas, M.</creator><creator>Tefas, A.</creator><creator>Pitas, I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification</title><author>Kyperountas, M. ; Tefas, A. ; Pitas, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3bb2449c8cab211f3fb9664de2c67955c8e5608790b8316470c625e3ce6c3f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Classification</topic><topic>Computer Simulation</topic><topic>Discriminant Analysis</topic><topic>Face</topic><topic>Face - anatomy &amp; histology</topic><topic>Face verification</topic><topic>Humans</topic><topic>Hyperplanes</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Informatics</topic><topic>Information security</topic><topic>Information Storage and Retrieval - methods</topic><topic>Linear discriminant analysis</topic><topic>linear discriminant analysis (LDA)</topic><topic>Linear Models</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phases</topic><topic>Sample Size</topic><topic>Similarity</topic><topic>small sample size (SSS) problem</topic><topic>Studies</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyperountas, M.</creatorcontrib><creatorcontrib>Tefas, A.</creatorcontrib><creatorcontrib>Pitas, I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyperountas, M.</au><au>Tefas, A.</au><au>Pitas, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>18</volume><issue>2</issue><spage>506</spage><epage>519</epage><pages>506-519</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A novel algorithm that can be used to boost the performance of face-verification methods that utilize Fisher's criterion is presented and evaluated. The algorithm is applied to similarity, or matching error, data and provides a general solution for overcoming the "small sample size" (SSS) problem, where the lack of sufficient training samples causes improper estimation of a linear separation hyperplane between the classes. Two independent phases constitute the proposed method. Initially, a set of weighted piecewise discriminant hyperplanes are used in order to provide a more accurate discriminant decision than the one produced by the traditional linear discriminant analysis (LDA) methodology. The expected classification ability of this method is investigated throughout a series of simulations. The second phase defines proper combinations for person-specific similarity scores and describes an outlier removal process that further enhances the classification ability. The proposed technique has been tested on the M2VTS and XM2VTS frontal face databases. Experimental results indicate that the proposed framework greatly improves the face-verification performance</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17385635</pmid><doi>10.1109/TNN.2006.885038</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2007-03, Vol.18 (2), p.506-519
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_880663524
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Biometrics
Biometry - methods
Classification
Computer Simulation
Discriminant Analysis
Face
Face - anatomy & histology
Face verification
Humans
Hyperplanes
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Informatics
Information security
Information Storage and Retrieval - methods
Linear discriminant analysis
linear discriminant analysis (LDA)
Linear Models
Neural networks
Pattern analysis
Pattern recognition
Pattern Recognition, Automated - methods
Phases
Sample Size
Similarity
small sample size (SSS) problem
Studies
System testing
title Weighted Piecewise LDA for Solving the Small Sample Size Problem in Face Verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Piecewise%20LDA%20for%20Solving%20the%20Small%20Sample%20Size%20Problem%20in%20Face%20Verification&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Kyperountas,%20M.&rft.date=2007-03-01&rft.volume=18&rft.issue=2&rft.spage=506&rft.epage=519&rft.pages=506-519&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2006.885038&rft_dat=%3Cproquest_RIE%3E880663524%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912214226&rft_id=info:pmid/17385635&rft_ieee_id=4118267&rfr_iscdi=true