Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma
Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2007-08, Vol.35 (4), p.1034-1040 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1040 |
---|---|
container_issue | 4 |
container_start_page | 1034 |
container_title | IEEE transactions on plasma science |
container_volume | 35 |
creator | Podder, N. Tarasova, A. Wilson, R. |
description | Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2.2 shockwaves are produced by a fast capacitor discharge (quarter period tau 1/4 = 1.4 mus ). In this paper, the shock propagation measurements are extended to the low pressure limit down to 3.6 torr while confirming the earlier measurements performed at gas pressures 15 torr and above. The shockwaves are launched through a plasma medium inside the shock tube, where the deflections of the laser beams are recorded on a fast oscilloscope. An average shockwave velocity in the plasma is determined from the time history of the laser deflection signals. The shockwave speed and the broadening of the laser deflection signals in the plasma are found to be dependent on the plasma discharge current. Shockwave speeds increase by 18% for the plasma at 3.6 torr over a range of plasma discharge current I = 0-150 mA and by 46% for the plasma at 15 torr over I = 7-150 mA. In addition, shockwave amplitudes are attenuated in the plasma and show linear dependence on the shockwave speed or Mach number. |
doi_str_mv | 10.1109/TPS.2007.901932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880660952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4287073</ieee_id><sourcerecordid>34529098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e44ce2f98d551423258a9e0b13383b223aa8d7c6fa6f26f2d02305423f614eff3</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AgCs7p2YOXIqinbi9J0ybHMecUBg42zyHLkq2za2fSOvz2ZnQoeBACjyS_vCR_hK4x9DAG0Z9PZz0CkPUEYEHJCeqEImJBM3aKOgCCxpRjeo4uvN8A4IQB6aDRbF3p9736NNFAa1MYp-q8KiNVLqNBXZuyaed5GY2Lah895l6vlVsF7lZhfVoov1WX6MyqwpurY-2it6fRfPgcT17HL8PBJNbh6jo2SaINsYIvGcMJoYRxJQwsMKWcLgihSvFlplOrUkvCWAKhwAK0KU6MtbSLHtq-O1d9NMbXchveY4pClaZqvOQc0hQEI0He_ytpwogAwQO8_QM3VePK8AuJBcNZBlQE1G-RdpX3zli5c_lWuS-JQR7SlyF9eUhftumHE3fHtsprVVinSp3732NciFRAGtxN63JjzM92QngGGaXfFuyLNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195177039</pqid></control><display><type>article</type><title>Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma</title><source>IEEE Electronic Library (IEL)</source><creator>Podder, N. ; Tarasova, A. ; Wilson, R.</creator><creatorcontrib>Podder, N. ; Tarasova, A. ; Wilson, R.</creatorcontrib><description>Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2.2 shockwaves are produced by a fast capacitor discharge (quarter period tau 1/4 = 1.4 mus ). In this paper, the shock propagation measurements are extended to the low pressure limit down to 3.6 torr while confirming the earlier measurements performed at gas pressures 15 torr and above. The shockwaves are launched through a plasma medium inside the shock tube, where the deflections of the laser beams are recorded on a fast oscilloscope. An average shockwave velocity in the plasma is determined from the time history of the laser deflection signals. The shockwave speed and the broadening of the laser deflection signals in the plasma are found to be dependent on the plasma discharge current. Shockwave speeds increase by 18% for the plasma at 3.6 torr over a range of plasma discharge current I = 0-150 mA and by 46% for the plasma at 15 torr over I = 7-150 mA. In addition, shockwave amplitudes are attenuated in the plasma and show linear dependence on the shockwave speed or Mach number.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2007.901932</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acceleration ; Argon ; Argon plasma ; Attenuation ; Deflection ; Discharge ; dispersion in plasmas ; Electric discharges ; Electric fields ; Electric shock ; Electrostatic discharges ; Exact sciences and technology ; Gas lasers ; glow discharge plasma ; Glow discharges ; Glow; corona ; Lasers ; Optical propagation ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma ; Plasma accelerators ; Plasma measurements ; Pressure measurement ; Shock tubes ; shockwave acceleration ; shockwave propagation ; Velocity</subject><ispartof>IEEE transactions on plasma science, 2007-08, Vol.35 (4), p.1034-1040</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e44ce2f98d551423258a9e0b13383b223aa8d7c6fa6f26f2d02305423f614eff3</citedby><cites>FETCH-LOGICAL-c381t-e44ce2f98d551423258a9e0b13383b223aa8d7c6fa6f26f2d02305423f614eff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4287073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4287073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18996906$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Podder, N.</creatorcontrib><creatorcontrib>Tarasova, A.</creatorcontrib><creatorcontrib>Wilson, R.</creatorcontrib><title>Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2.2 shockwaves are produced by a fast capacitor discharge (quarter period tau 1/4 = 1.4 mus ). In this paper, the shock propagation measurements are extended to the low pressure limit down to 3.6 torr while confirming the earlier measurements performed at gas pressures 15 torr and above. The shockwaves are launched through a plasma medium inside the shock tube, where the deflections of the laser beams are recorded on a fast oscilloscope. An average shockwave velocity in the plasma is determined from the time history of the laser deflection signals. The shockwave speed and the broadening of the laser deflection signals in the plasma are found to be dependent on the plasma discharge current. Shockwave speeds increase by 18% for the plasma at 3.6 torr over a range of plasma discharge current I = 0-150 mA and by 46% for the plasma at 15 torr over I = 7-150 mA. In addition, shockwave amplitudes are attenuated in the plasma and show linear dependence on the shockwave speed or Mach number.</description><subject>Acceleration</subject><subject>Argon</subject><subject>Argon plasma</subject><subject>Attenuation</subject><subject>Deflection</subject><subject>Discharge</subject><subject>dispersion in plasmas</subject><subject>Electric discharges</subject><subject>Electric fields</subject><subject>Electric shock</subject><subject>Electrostatic discharges</subject><subject>Exact sciences and technology</subject><subject>Gas lasers</subject><subject>glow discharge plasma</subject><subject>Glow discharges</subject><subject>Glow; corona</subject><subject>Lasers</subject><subject>Optical propagation</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma</subject><subject>Plasma accelerators</subject><subject>Plasma measurements</subject><subject>Pressure measurement</subject><subject>Shock tubes</subject><subject>shockwave acceleration</subject><subject>shockwave propagation</subject><subject>Velocity</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90EFLwzAUB_AgCs7p2YOXIqinbi9J0ybHMecUBg42zyHLkq2za2fSOvz2ZnQoeBACjyS_vCR_hK4x9DAG0Z9PZz0CkPUEYEHJCeqEImJBM3aKOgCCxpRjeo4uvN8A4IQB6aDRbF3p9736NNFAa1MYp-q8KiNVLqNBXZuyaed5GY2Lah895l6vlVsF7lZhfVoov1WX6MyqwpurY-2it6fRfPgcT17HL8PBJNbh6jo2SaINsYIvGcMJoYRxJQwsMKWcLgihSvFlplOrUkvCWAKhwAK0KU6MtbSLHtq-O1d9NMbXchveY4pClaZqvOQc0hQEI0He_ytpwogAwQO8_QM3VePK8AuJBcNZBlQE1G-RdpX3zli5c_lWuS-JQR7SlyF9eUhftumHE3fHtsprVVinSp3732NciFRAGtxN63JjzM92QngGGaXfFuyLNg</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Podder, N.</creator><creator>Tarasova, A.</creator><creator>Wilson, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma</title><author>Podder, N. ; Tarasova, A. ; Wilson, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e44ce2f98d551423258a9e0b13383b223aa8d7c6fa6f26f2d02305423f614eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acceleration</topic><topic>Argon</topic><topic>Argon plasma</topic><topic>Attenuation</topic><topic>Deflection</topic><topic>Discharge</topic><topic>dispersion in plasmas</topic><topic>Electric discharges</topic><topic>Electric fields</topic><topic>Electric shock</topic><topic>Electrostatic discharges</topic><topic>Exact sciences and technology</topic><topic>Gas lasers</topic><topic>glow discharge plasma</topic><topic>Glow discharges</topic><topic>Glow; corona</topic><topic>Lasers</topic><topic>Optical propagation</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma</topic><topic>Plasma accelerators</topic><topic>Plasma measurements</topic><topic>Pressure measurement</topic><topic>Shock tubes</topic><topic>shockwave acceleration</topic><topic>shockwave propagation</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podder, N.</creatorcontrib><creatorcontrib>Tarasova, A.</creatorcontrib><creatorcontrib>Wilson, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Podder, N.</au><au>Tarasova, A.</au><au>Wilson, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>35</volume><issue>4</issue><spage>1034</spage><epage>1040</epage><pages>1034-1040</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Experimental investigations of the shockwave propagation in the direction parallel to the electric field in low-pressure longitudinal glow discharge argon plasmas are performed by the simultaneous multipoint laser deflection technique. In the newly developed shock tube at Troy University, Mach 1.5-2.2 shockwaves are produced by a fast capacitor discharge (quarter period tau 1/4 = 1.4 mus ). In this paper, the shock propagation measurements are extended to the low pressure limit down to 3.6 torr while confirming the earlier measurements performed at gas pressures 15 torr and above. The shockwaves are launched through a plasma medium inside the shock tube, where the deflections of the laser beams are recorded on a fast oscilloscope. An average shockwave velocity in the plasma is determined from the time history of the laser deflection signals. The shockwave speed and the broadening of the laser deflection signals in the plasma are found to be dependent on the plasma discharge current. Shockwave speeds increase by 18% for the plasma at 3.6 torr over a range of plasma discharge current I = 0-150 mA and by 46% for the plasma at 15 torr over I = 7-150 mA. In addition, shockwave amplitudes are attenuated in the plasma and show linear dependence on the shockwave speed or Mach number.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPS.2007.901932</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2007-08, Vol.35 (4), p.1034-1040 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_miscellaneous_880660952 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Argon Argon plasma Attenuation Deflection Discharge dispersion in plasmas Electric discharges Electric fields Electric shock Electrostatic discharges Exact sciences and technology Gas lasers glow discharge plasma Glow discharges Glow corona Lasers Optical propagation Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma Plasma accelerators Plasma measurements Pressure measurement Shock tubes shockwave acceleration shockwave propagation Velocity |
title | Shockwave Acceleration and Attenuation in Glow Discharge Argon Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shockwave%20Acceleration%20and%20Attenuation%20in%20Glow%20Discharge%20Argon%20Plasma&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Podder,%20N.&rft.date=2007-08-01&rft.volume=35&rft.issue=4&rft.spage=1034&rft.epage=1040&rft.pages=1034-1040&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2007.901932&rft_dat=%3Cproquest_RIE%3E34529098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195177039&rft_id=info:pmid/&rft_ieee_id=4287073&rfr_iscdi=true |