DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation
In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2011-06, Vol.230 (12), p.4871-4898 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4898 |
---|---|
container_issue | 12 |
container_start_page | 4871 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Fernando, Anne M. Hu, Fang Q. |
description | In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature. |
doi_str_mv | 10.1016/j.jcp.2011.03.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880660221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999111001513</els_id><sourcerecordid>880660221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</originalsourceid><addsrcrecordid>eNp9kLFuFDEQhi0EEkfgAejcoFS7eHbXvjWpooRcIiWigdry2eOcL3v2YvuCeHu8uogy1RTzzT8zHyGfgbXAQHzdt3sztx0DaFnfMja-IStgkjXdGsRbsmKsg0ZKCe_Jh5z3rBJ8GFfEX28empvrb_SSOh98QWq9c5gwGKTZ7PCAdKszWhoDLbulnU0MxYdjPGa60ROmJx_oAcsuWqrnefIVLpH-0c9I5xRn_aiLj-Ejeef0lPHTSz0jv26-_7y6be5_bO6uLu8b03NZmkEg5w7G3m4lX3PLzXYEOeheWDeOTGyN5tL2ZnBCrwdpOAJUiEkxjlKg7s_I-Sm37v59xFzUoZ6M06QD1pPVEiJY10El4USaFHNO6NSc_EGnvwqYWqyqvapW1WJVsV5VZ3Xmy0u6zkZPLulgfP4_2A3AuWCichcnDuurzx6TysYvUq1PaIqy0b-y5R_bwoyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880660221</pqid></control><display><type>article</type><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><source>Elsevier ScienceDirect Journals</source><creator>Fernando, Anne M. ; Hu, Fang Q.</creator><creatorcontrib>Fernando, Anne M. ; Hu, Fang Q.</creatorcontrib><description>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.03.008</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Boundaries ; Computational techniques ; DGM ; Exact sciences and technology ; Flux ; Galerkin methods ; High order finite difference methods ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Wave propagation</subject><ispartof>Journal of computational physics, 2011-06, Vol.230 (12), p.4871-4898</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</citedby><cites>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999111001513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24155606$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernando, Anne M.</creatorcontrib><creatorcontrib>Hu, Fang Q.</creatorcontrib><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><title>Journal of computational physics</title><description>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational techniques</subject><subject>DGM</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Galerkin methods</subject><subject>High order finite difference methods</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Wave propagation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLFuFDEQhi0EEkfgAejcoFS7eHbXvjWpooRcIiWigdry2eOcL3v2YvuCeHu8uogy1RTzzT8zHyGfgbXAQHzdt3sztx0DaFnfMja-IStgkjXdGsRbsmKsg0ZKCe_Jh5z3rBJ8GFfEX28empvrb_SSOh98QWq9c5gwGKTZ7PCAdKszWhoDLbulnU0MxYdjPGa60ROmJx_oAcsuWqrnefIVLpH-0c9I5xRn_aiLj-Ejeef0lPHTSz0jv26-_7y6be5_bO6uLu8b03NZmkEg5w7G3m4lX3PLzXYEOeheWDeOTGyN5tL2ZnBCrwdpOAJUiEkxjlKg7s_I-Sm37v59xFzUoZ6M06QD1pPVEiJY10El4USaFHNO6NSc_EGnvwqYWqyqvapW1WJVsV5VZ3Xmy0u6zkZPLulgfP4_2A3AuWCichcnDuurzx6TysYvUq1PaIqy0b-y5R_bwoyo</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Fernando, Anne M.</creator><creator>Hu, Fang Q.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110601</creationdate><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><author>Fernando, Anne M. ; Hu, Fang Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational techniques</topic><topic>DGM</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Galerkin methods</topic><topic>High order finite difference methods</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernando, Anne M.</creatorcontrib><creatorcontrib>Hu, Fang Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernando, Anne M.</au><au>Hu, Fang Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</atitle><jtitle>Journal of computational physics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>230</volume><issue>12</issue><spage>4871</spage><epage>4898</epage><pages>4871-4898</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.03.008</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-06, Vol.230 (12), p.4871-4898 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_880660221 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Boundaries Computational techniques DGM Exact sciences and technology Flux Galerkin methods High order finite difference methods Mathematical analysis Mathematical methods in physics Mathematical models Nonlinearity Physics Wave propagation |
title | DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DGM-FD:%20A%20finite%20difference%20scheme%20based%20on%20the%20discontinuous%20Galerkin%20method%20applied%20to%20wave%20propagation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Fernando,%20Anne%20M.&rft.date=2011-06-01&rft.volume=230&rft.issue=12&rft.spage=4871&rft.epage=4898&rft.pages=4871-4898&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.03.008&rft_dat=%3Cproquest_cross%3E880660221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880660221&rft_id=info:pmid/&rft_els_id=S0021999111001513&rfr_iscdi=true |