DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation

In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2011-06, Vol.230 (12), p.4871-4898
Hauptverfasser: Fernando, Anne M., Hu, Fang Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4898
container_issue 12
container_start_page 4871
container_title Journal of computational physics
container_volume 230
creator Fernando, Anne M.
Hu, Fang Q.
description In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.
doi_str_mv 10.1016/j.jcp.2011.03.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880660221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999111001513</els_id><sourcerecordid>880660221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</originalsourceid><addsrcrecordid>eNp9kLFuFDEQhi0EEkfgAejcoFS7eHbXvjWpooRcIiWigdry2eOcL3v2YvuCeHu8uogy1RTzzT8zHyGfgbXAQHzdt3sztx0DaFnfMja-IStgkjXdGsRbsmKsg0ZKCe_Jh5z3rBJ8GFfEX28empvrb_SSOh98QWq9c5gwGKTZ7PCAdKszWhoDLbulnU0MxYdjPGa60ROmJx_oAcsuWqrnefIVLpH-0c9I5xRn_aiLj-Ejeef0lPHTSz0jv26-_7y6be5_bO6uLu8b03NZmkEg5w7G3m4lX3PLzXYEOeheWDeOTGyN5tL2ZnBCrwdpOAJUiEkxjlKg7s_I-Sm37v59xFzUoZ6M06QD1pPVEiJY10El4USaFHNO6NSc_EGnvwqYWqyqvapW1WJVsV5VZ3Xmy0u6zkZPLulgfP4_2A3AuWCichcnDuurzx6TysYvUq1PaIqy0b-y5R_bwoyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880660221</pqid></control><display><type>article</type><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><source>Elsevier ScienceDirect Journals</source><creator>Fernando, Anne M. ; Hu, Fang Q.</creator><creatorcontrib>Fernando, Anne M. ; Hu, Fang Q.</creatorcontrib><description>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2011.03.008</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Approximation ; Boundaries ; Computational techniques ; DGM ; Exact sciences and technology ; Flux ; Galerkin methods ; High order finite difference methods ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinearity ; Physics ; Wave propagation</subject><ispartof>Journal of computational physics, 2011-06, Vol.230 (12), p.4871-4898</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</citedby><cites>FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999111001513$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24155606$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernando, Anne M.</creatorcontrib><creatorcontrib>Hu, Fang Q.</creatorcontrib><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><title>Journal of computational physics</title><description>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</description><subject>Approximation</subject><subject>Boundaries</subject><subject>Computational techniques</subject><subject>DGM</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Galerkin methods</subject><subject>High order finite difference methods</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Wave propagation</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLFuFDEQhi0EEkfgAejcoFS7eHbXvjWpooRcIiWigdry2eOcL3v2YvuCeHu8uogy1RTzzT8zHyGfgbXAQHzdt3sztx0DaFnfMja-IStgkjXdGsRbsmKsg0ZKCe_Jh5z3rBJ8GFfEX28empvrb_SSOh98QWq9c5gwGKTZ7PCAdKszWhoDLbulnU0MxYdjPGa60ROmJx_oAcsuWqrnefIVLpH-0c9I5xRn_aiLj-Ejeef0lPHTSz0jv26-_7y6be5_bO6uLu8b03NZmkEg5w7G3m4lX3PLzXYEOeheWDeOTGyN5tL2ZnBCrwdpOAJUiEkxjlKg7s_I-Sm37v59xFzUoZ6M06QD1pPVEiJY10El4USaFHNO6NSc_EGnvwqYWqyqvapW1WJVsV5VZ3Xmy0u6zkZPLulgfP4_2A3AuWCichcnDuurzx6TysYvUq1PaIqy0b-y5R_bwoyo</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Fernando, Anne M.</creator><creator>Hu, Fang Q.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110601</creationdate><title>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</title><author>Fernando, Anne M. ; Hu, Fang Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-46e55f183db9575d5cb8194a36df8806bca59d3c4f6a749c5e11d5c0968896ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Boundaries</topic><topic>Computational techniques</topic><topic>DGM</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Galerkin methods</topic><topic>High order finite difference methods</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernando, Anne M.</creatorcontrib><creatorcontrib>Hu, Fang Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernando, Anne M.</au><au>Hu, Fang Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation</atitle><jtitle>Journal of computational physics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>230</volume><issue>12</issue><spage>4871</spage><epage>4898</epage><pages>4871-4898</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>In this paper we formulate a numerical method that is high order with strong accuracy for numerical wave numbers, and is adaptive to non-uniform grids. Such a method is developed based on the discontinuous Galerkin method (DGM) applied to the hyperbolic equation, resulting in finite difference type schemes applicable to non-uniform grids. The schemes will be referred to as DGM-FD schemes. These schemes inherit naturally some features of the DGM, such as high-order approximations, applicability to non-uniform grids and super-accuracy for wave propagations. Stability of the schemes with boundary closures is investigated and validated. Proposed scheme is demonstrated by numerical examples including the linearized acoustic waves and solutions of non-linear Burger’s equation and the flat-plate boundary layer problem. For non-linear equations, proposed flux finite difference formula requires no explicit upwind and downwind split of the flux. This is in contrast to existing upwind finite difference schemes in the literature.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2011.03.008</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-06, Vol.230 (12), p.4871-4898
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_880660221
source Elsevier ScienceDirect Journals
subjects Approximation
Boundaries
Computational techniques
DGM
Exact sciences and technology
Flux
Galerkin methods
High order finite difference methods
Mathematical analysis
Mathematical methods in physics
Mathematical models
Nonlinearity
Physics
Wave propagation
title DGM-FD: A finite difference scheme based on the discontinuous Galerkin method applied to wave propagation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DGM-FD:%20A%20finite%20difference%20scheme%20based%20on%20the%20discontinuous%20Galerkin%20method%20applied%20to%20wave%20propagation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Fernando,%20Anne%20M.&rft.date=2011-06-01&rft.volume=230&rft.issue=12&rft.spage=4871&rft.epage=4898&rft.pages=4871-4898&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2011.03.008&rft_dat=%3Cproquest_cross%3E880660221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880660221&rft_id=info:pmid/&rft_els_id=S0021999111001513&rfr_iscdi=true