Minimalist counting in sensor networks (Noise helps)
We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total...
Gespeichert in:
Veröffentlicht in: | Ad hoc networks 2011-08, Vol.9 (6), p.987-997 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 997 |
---|---|
container_issue | 6 |
container_start_page | 987 |
container_title | Ad hoc networks |
container_volume | 9 |
creator | Baryshnikov, Y.M. Coffman, E.G. Kwak, K.J. Moran, Bill |
description | We propose a novel algorithm for counting
N indistinguishable objects, called
targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of
N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems. |
doi_str_mv | 10.1016/j.adhoc.2010.08.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880659346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510001162</els_id><sourcerecordid>880659346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCViyAUOCHceOPTCgqvyRCiwwW6n9Ql1Su_ilIL49KUWMTHd6-t2T7gg5ZbRglMnLZdG4RbRFSYcLVcUge2TERE1zVTO-_-epOCRHiEtKSz3AI1I9-OBXTeexz2zchN6H18yHDCFgTFmA_jOmN8zOH6NHyBbQrfHimBy0TYdw8qtj8nIzfZ7c5bOn2_vJ9Sy3pRJ9bp2Y14o7TqmQDrSQlS51pedQai2btq1kC5Wb1xIkMOakVpV13EnOQXMq-Zic7f6uU3zfAPZm5dFC1zUB4gaNUlQKzastyXekTRExQWvWaaiVvgyjZjuRWZqficx2IkOVGWRIXe1SMJT48JAMWg_BgvMJbG9c9P_mvwFOb282</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880659346</pqid></control><display><type>article</type><title>Minimalist counting in sensor networks (Noise helps)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</creator><creatorcontrib>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</creatorcontrib><description>We propose a novel algorithm for counting
N indistinguishable objects, called
targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of
N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.08.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Counting ; Cumulants ; Estimates ; Inclusion–exclusion formula ; Intersections ; Mathematical models ; Minimalist counting ; Networks ; Noise ; Sensing noise ; Sensor networks ; Sensors ; Target counting</subject><ispartof>Ad hoc networks, 2011-08, Vol.9 (6), p.987-997</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.08.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Kwak, K.J.</creatorcontrib><creatorcontrib>Moran, Bill</creatorcontrib><title>Minimalist counting in sensor networks (Noise helps)</title><title>Ad hoc networks</title><description>We propose a novel algorithm for counting
N indistinguishable objects, called
targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of
N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</description><subject>Algorithms</subject><subject>Counting</subject><subject>Cumulants</subject><subject>Estimates</subject><subject>Inclusion–exclusion formula</subject><subject>Intersections</subject><subject>Mathematical models</subject><subject>Minimalist counting</subject><subject>Networks</subject><subject>Noise</subject><subject>Sensing noise</subject><subject>Sensor networks</subject><subject>Sensors</subject><subject>Target counting</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCViyAUOCHceOPTCgqvyRCiwwW6n9Ql1Su_ilIL49KUWMTHd6-t2T7gg5ZbRglMnLZdG4RbRFSYcLVcUge2TERE1zVTO-_-epOCRHiEtKSz3AI1I9-OBXTeexz2zchN6H18yHDCFgTFmA_jOmN8zOH6NHyBbQrfHimBy0TYdw8qtj8nIzfZ7c5bOn2_vJ9Sy3pRJ9bp2Y14o7TqmQDrSQlS51pedQai2btq1kC5Wb1xIkMOakVpV13EnOQXMq-Zic7f6uU3zfAPZm5dFC1zUB4gaNUlQKzastyXekTRExQWvWaaiVvgyjZjuRWZqficx2IkOVGWRIXe1SMJT48JAMWg_BgvMJbG9c9P_mvwFOb282</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Baryshnikov, Y.M.</creator><creator>Coffman, E.G.</creator><creator>Kwak, K.J.</creator><creator>Moran, Bill</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Minimalist counting in sensor networks (Noise helps)</title><author>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Counting</topic><topic>Cumulants</topic><topic>Estimates</topic><topic>Inclusion–exclusion formula</topic><topic>Intersections</topic><topic>Mathematical models</topic><topic>Minimalist counting</topic><topic>Networks</topic><topic>Noise</topic><topic>Sensing noise</topic><topic>Sensor networks</topic><topic>Sensors</topic><topic>Target counting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Kwak, K.J.</creatorcontrib><creatorcontrib>Moran, Bill</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryshnikov, Y.M.</au><au>Coffman, E.G.</au><au>Kwak, K.J.</au><au>Moran, Bill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimalist counting in sensor networks (Noise helps)</atitle><jtitle>Ad hoc networks</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>9</volume><issue>6</issue><spage>987</spage><epage>997</epage><pages>987-997</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>We propose a novel algorithm for counting
N indistinguishable objects, called
targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of
N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.08.010</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-8705 |
ispartof | Ad hoc networks, 2011-08, Vol.9 (6), p.987-997 |
issn | 1570-8705 1570-8713 |
language | eng |
recordid | cdi_proquest_miscellaneous_880659346 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Counting Cumulants Estimates Inclusion–exclusion formula Intersections Mathematical models Minimalist counting Networks Noise Sensing noise Sensor networks Sensors Target counting |
title | Minimalist counting in sensor networks (Noise helps) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimalist%20counting%20in%20sensor%20networks%20(Noise%20helps)&rft.jtitle=Ad%20hoc%20networks&rft.au=Baryshnikov,%20Y.M.&rft.date=2011-08-01&rft.volume=9&rft.issue=6&rft.spage=987&rft.epage=997&rft.pages=987-997&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.08.010&rft_dat=%3Cproquest_cross%3E880659346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880659346&rft_id=info:pmid/&rft_els_id=S1570870510001162&rfr_iscdi=true |