Minimalist counting in sensor networks (Noise helps)

We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ad hoc networks 2011-08, Vol.9 (6), p.987-997
Hauptverfasser: Baryshnikov, Y.M., Coffman, E.G., Kwak, K.J., Moran, Bill
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 997
container_issue 6
container_start_page 987
container_title Ad hoc networks
container_volume 9
creator Baryshnikov, Y.M.
Coffman, E.G.
Kwak, K.J.
Moran, Bill
description We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.
doi_str_mv 10.1016/j.adhoc.2010.08.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880659346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510001162</els_id><sourcerecordid>880659346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwCViyAUOCHceOPTCgqvyRCiwwW6n9Ql1Su_ilIL49KUWMTHd6-t2T7gg5ZbRglMnLZdG4RbRFSYcLVcUge2TERE1zVTO-_-epOCRHiEtKSz3AI1I9-OBXTeexz2zchN6H18yHDCFgTFmA_jOmN8zOH6NHyBbQrfHimBy0TYdw8qtj8nIzfZ7c5bOn2_vJ9Sy3pRJ9bp2Y14o7TqmQDrSQlS51pedQai2btq1kC5Wb1xIkMOakVpV13EnOQXMq-Zic7f6uU3zfAPZm5dFC1zUB4gaNUlQKzastyXekTRExQWvWaaiVvgyjZjuRWZqficx2IkOVGWRIXe1SMJT48JAMWg_BgvMJbG9c9P_mvwFOb282</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880659346</pqid></control><display><type>article</type><title>Minimalist counting in sensor networks (Noise helps)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</creator><creatorcontrib>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</creatorcontrib><description>We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.08.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Counting ; Cumulants ; Estimates ; Inclusion–exclusion formula ; Intersections ; Mathematical models ; Minimalist counting ; Networks ; Noise ; Sensing noise ; Sensor networks ; Sensors ; Target counting</subject><ispartof>Ad hoc networks, 2011-08, Vol.9 (6), p.987-997</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.08.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Kwak, K.J.</creatorcontrib><creatorcontrib>Moran, Bill</creatorcontrib><title>Minimalist counting in sensor networks (Noise helps)</title><title>Ad hoc networks</title><description>We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</description><subject>Algorithms</subject><subject>Counting</subject><subject>Cumulants</subject><subject>Estimates</subject><subject>Inclusion–exclusion formula</subject><subject>Intersections</subject><subject>Mathematical models</subject><subject>Minimalist counting</subject><subject>Networks</subject><subject>Noise</subject><subject>Sensing noise</subject><subject>Sensor networks</subject><subject>Sensors</subject><subject>Target counting</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwCViyAUOCHceOPTCgqvyRCiwwW6n9Ql1Su_ilIL49KUWMTHd6-t2T7gg5ZbRglMnLZdG4RbRFSYcLVcUge2TERE1zVTO-_-epOCRHiEtKSz3AI1I9-OBXTeexz2zchN6H18yHDCFgTFmA_jOmN8zOH6NHyBbQrfHimBy0TYdw8qtj8nIzfZ7c5bOn2_vJ9Sy3pRJ9bp2Y14o7TqmQDrSQlS51pedQai2btq1kC5Wb1xIkMOakVpV13EnOQXMq-Zic7f6uU3zfAPZm5dFC1zUB4gaNUlQKzastyXekTRExQWvWaaiVvgyjZjuRWZqficx2IkOVGWRIXe1SMJT48JAMWg_BgvMJbG9c9P_mvwFOb282</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Baryshnikov, Y.M.</creator><creator>Coffman, E.G.</creator><creator>Kwak, K.J.</creator><creator>Moran, Bill</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Minimalist counting in sensor networks (Noise helps)</title><author>Baryshnikov, Y.M. ; Coffman, E.G. ; Kwak, K.J. ; Moran, Bill</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-cd5b783d30056de956492949be2996aff46fe4db76e6e11d6984cd3d633e93063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Counting</topic><topic>Cumulants</topic><topic>Estimates</topic><topic>Inclusion–exclusion formula</topic><topic>Intersections</topic><topic>Mathematical models</topic><topic>Minimalist counting</topic><topic>Networks</topic><topic>Noise</topic><topic>Sensing noise</topic><topic>Sensor networks</topic><topic>Sensors</topic><topic>Target counting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baryshnikov, Y.M.</creatorcontrib><creatorcontrib>Coffman, E.G.</creatorcontrib><creatorcontrib>Kwak, K.J.</creatorcontrib><creatorcontrib>Moran, Bill</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baryshnikov, Y.M.</au><au>Coffman, E.G.</au><au>Kwak, K.J.</au><au>Moran, Bill</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimalist counting in sensor networks (Noise helps)</atitle><jtitle>Ad hoc networks</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>9</volume><issue>6</issue><spage>987</spage><epage>997</epage><pages>987-997</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>We propose a novel algorithm for counting N indistinguishable objects, called targets, by a collection of sensors. We adopt a minimalist scenario where sensors are unaware of the (non-empty) intersections of sensing regions, and so simple addition of all sensor counts inflates estimates of the total number of targets. The multiple counting in intersections must be accounted for, but with nothing more than the sensor counts, this is clearly impossible. However, noise is typically present in the target counting of many, if not most, applications. We make the key observation that if there is a (target-dependent) noise source affecting all sensors simultaneously, then it couples those with non-empty intersections. Exploitation of this coupling allows us to extract multiple-counting statistics from stochastic correlation patterns, and hence to compute accurate estimates of N via the classical inclusion–exclusion formula. Cumulants are the correlation measures of choice. Our analysis brings out and resolves certain technicalities that arise in our statistical counting algorithm. Examples are worked out to show the potential of the new algorithm. The paper concludes with a discussion of alternative models and open problems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.08.010</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-8705
ispartof Ad hoc networks, 2011-08, Vol.9 (6), p.987-997
issn 1570-8705
1570-8713
language eng
recordid cdi_proquest_miscellaneous_880659346
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Counting
Cumulants
Estimates
Inclusion–exclusion formula
Intersections
Mathematical models
Minimalist counting
Networks
Noise
Sensing noise
Sensor networks
Sensors
Target counting
title Minimalist counting in sensor networks (Noise helps)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimalist%20counting%20in%20sensor%20networks%20(Noise%20helps)&rft.jtitle=Ad%20hoc%20networks&rft.au=Baryshnikov,%20Y.M.&rft.date=2011-08-01&rft.volume=9&rft.issue=6&rft.spage=987&rft.epage=997&rft.pages=987-997&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.08.010&rft_dat=%3Cproquest_cross%3E880659346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880659346&rft_id=info:pmid/&rft_els_id=S1570870510001162&rfr_iscdi=true