Efficient modulo 2 n ±1 squarers

Modulo 2 n ±1 squarers are useful components for designing special purpose digital signal processors that internally use a residue number system and for implementing the modulo exponentiators and multiplicative inverses required in cryptographic algorithms. In this paper we propose, in a unified way...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integration (Amsterdam) 2011-06, Vol.44 (3), p.163-174
Hauptverfasser: Bakalis, D., Vergos, H.T., Spyrou, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 3
container_start_page 163
container_title Integration (Amsterdam)
container_volume 44
creator Bakalis, D.
Vergos, H.T.
Spyrou, A.
description Modulo 2 n ±1 squarers are useful components for designing special purpose digital signal processors that internally use a residue number system and for implementing the modulo exponentiators and multiplicative inverses required in cryptographic algorithms. In this paper we propose, in a unified way, architectures for their design that are based on the radix-4 modified Booth encoding. For the modulo 2 n +1 case, both the normal and the diminished-one representations are considered. Experimental results show that the proposed squarers offer significant savings in the implementation area over previous proposals that can reach up to 38% for sufficiently large operand widths, while in many cases a small improvement in execution delay can also be achieved.
doi_str_mv 10.1016/j.vlsi.2011.03.006
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_miscellaneous_880658051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167926011000319</els_id><sourcerecordid>880658051</sourcerecordid><originalsourceid>FETCH-LOGICAL-e851-f21d5a57a1a4efaf644409ca8c4acce7108f0ff472bcb3bc78ce0e0d8bd0abe3</originalsourceid><addsrcrecordid>eNotkMFKxDAURYMoWEd_wFVduWp9L02aDLiRYUaFARe6D2n6Aimd1mna-S9_wS-zZVzdzeFyOIzdI-QIWD41-amNIeeAmEORA5QXLEGteKYk55csmSGVrXkJ1-wmxgYAUCiZsIet98EF6sb00NdT26c87dLfH0zjcbIDDfGWXXnbRrr73xX73G2_Nm_Z_uP1ffOyz0hLzDzHWlqpLFpB3vpSCAFrZ7UT1jlSCNqD90LxylVF5ZR2BAS1rmqwFRUr9nh-_R7640RxNIcQHbWt7aifotEaSqlB4kw-n0maZU6BBhMXf0d1GMiNpu6DQTBLFtOYJYtZshgozJyl-AMVklfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880658051</pqid></control><display><type>article</type><title>Efficient modulo 2 n ±1 squarers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bakalis, D. ; Vergos, H.T. ; Spyrou, A.</creator><creatorcontrib>Bakalis, D. ; Vergos, H.T. ; Spyrou, A.</creatorcontrib><description>Modulo 2 n ±1 squarers are useful components for designing special purpose digital signal processors that internally use a residue number system and for implementing the modulo exponentiators and multiplicative inverses required in cryptographic algorithms. In this paper we propose, in a unified way, architectures for their design that are based on the radix-4 modified Booth encoding. For the modulo 2 n +1 case, both the normal and the diminished-one representations are considered. Experimental results show that the proposed squarers offer significant savings in the implementation area over previous proposals that can reach up to 38% for sufficiently large operand widths, while in many cases a small improvement in execution delay can also be achieved.</description><identifier>ISSN: 0167-9260</identifier><identifier>EISSN: 1872-7522</identifier><identifier>DOI: 10.1016/j.vlsi.2011.03.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Booth encoding ; Booths ; Computer arithmetic ; Cryptography ; Delay ; Design engineering ; Digital ; Modulo arithmetic ; Processors ; Representations ; Residue number system ; Residue number systems ; Squarers</subject><ispartof>Integration (Amsterdam), 2011-06, Vol.44 (3), p.163-174</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vlsi.2011.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bakalis, D.</creatorcontrib><creatorcontrib>Vergos, H.T.</creatorcontrib><creatorcontrib>Spyrou, A.</creatorcontrib><title>Efficient modulo 2 n ±1 squarers</title><title>Integration (Amsterdam)</title><description>Modulo 2 n ±1 squarers are useful components for designing special purpose digital signal processors that internally use a residue number system and for implementing the modulo exponentiators and multiplicative inverses required in cryptographic algorithms. In this paper we propose, in a unified way, architectures for their design that are based on the radix-4 modified Booth encoding. For the modulo 2 n +1 case, both the normal and the diminished-one representations are considered. Experimental results show that the proposed squarers offer significant savings in the implementation area over previous proposals that can reach up to 38% for sufficiently large operand widths, while in many cases a small improvement in execution delay can also be achieved.</description><subject>Booth encoding</subject><subject>Booths</subject><subject>Computer arithmetic</subject><subject>Cryptography</subject><subject>Delay</subject><subject>Design engineering</subject><subject>Digital</subject><subject>Modulo arithmetic</subject><subject>Processors</subject><subject>Representations</subject><subject>Residue number system</subject><subject>Residue number systems</subject><subject>Squarers</subject><issn>0167-9260</issn><issn>1872-7522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkMFKxDAURYMoWEd_wFVduWp9L02aDLiRYUaFARe6D2n6Aimd1mna-S9_wS-zZVzdzeFyOIzdI-QIWD41-amNIeeAmEORA5QXLEGteKYk55csmSGVrXkJ1-wmxgYAUCiZsIet98EF6sb00NdT26c87dLfH0zjcbIDDfGWXXnbRrr73xX73G2_Nm_Z_uP1ffOyz0hLzDzHWlqpLFpB3vpSCAFrZ7UT1jlSCNqD90LxylVF5ZR2BAS1rmqwFRUr9nh-_R7640RxNIcQHbWt7aifotEaSqlB4kw-n0maZU6BBhMXf0d1GMiNpu6DQTBLFtOYJYtZshgozJyl-AMVklfk</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Bakalis, D.</creator><creator>Vergos, H.T.</creator><creator>Spyrou, A.</creator><general>Elsevier B.V</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110601</creationdate><title>Efficient modulo 2 n ±1 squarers</title><author>Bakalis, D. ; Vergos, H.T. ; Spyrou, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e851-f21d5a57a1a4efaf644409ca8c4acce7108f0ff472bcb3bc78ce0e0d8bd0abe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Booth encoding</topic><topic>Booths</topic><topic>Computer arithmetic</topic><topic>Cryptography</topic><topic>Delay</topic><topic>Design engineering</topic><topic>Digital</topic><topic>Modulo arithmetic</topic><topic>Processors</topic><topic>Representations</topic><topic>Residue number system</topic><topic>Residue number systems</topic><topic>Squarers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakalis, D.</creatorcontrib><creatorcontrib>Vergos, H.T.</creatorcontrib><creatorcontrib>Spyrou, A.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Integration (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakalis, D.</au><au>Vergos, H.T.</au><au>Spyrou, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient modulo 2 n ±1 squarers</atitle><jtitle>Integration (Amsterdam)</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>44</volume><issue>3</issue><spage>163</spage><epage>174</epage><pages>163-174</pages><issn>0167-9260</issn><eissn>1872-7522</eissn><abstract>Modulo 2 n ±1 squarers are useful components for designing special purpose digital signal processors that internally use a residue number system and for implementing the modulo exponentiators and multiplicative inverses required in cryptographic algorithms. In this paper we propose, in a unified way, architectures for their design that are based on the radix-4 modified Booth encoding. For the modulo 2 n +1 case, both the normal and the diminished-one representations are considered. Experimental results show that the proposed squarers offer significant savings in the implementation area over previous proposals that can reach up to 38% for sufficiently large operand widths, while in many cases a small improvement in execution delay can also be achieved.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.vlsi.2011.03.006</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9260
ispartof Integration (Amsterdam), 2011-06, Vol.44 (3), p.163-174
issn 0167-9260
1872-7522
language eng
recordid cdi_proquest_miscellaneous_880658051
source Elsevier ScienceDirect Journals Complete
subjects Booth encoding
Booths
Computer arithmetic
Cryptography
Delay
Design engineering
Digital
Modulo arithmetic
Processors
Representations
Residue number system
Residue number systems
Squarers
title Efficient modulo 2 n ±1 squarers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A31%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20modulo%202%20n%20%C2%B11%20squarers&rft.jtitle=Integration%20(Amsterdam)&rft.au=Bakalis,%20D.&rft.date=2011-06-01&rft.volume=44&rft.issue=3&rft.spage=163&rft.epage=174&rft.pages=163-174&rft.issn=0167-9260&rft.eissn=1872-7522&rft_id=info:doi/10.1016/j.vlsi.2011.03.006&rft_dat=%3Cproquest_elsev%3E880658051%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880658051&rft_id=info:pmid/&rft_els_id=S0167926011000319&rfr_iscdi=true