An evolutionary tuning technique for type-2 fuzzy logic controller
Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2011-04, Vol.33 (2), p.223-245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 2 |
container_start_page | 223 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 33 |
creator | Mohammadi, S.M.A. Gharaveisi, A.A. Mashinchi, M. Vaezi-Nejad, S.M. |
description | Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations. |
doi_str_mv | 10.1177/0142331209104480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880655302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331209104480</sage_id><sourcerecordid>2324939531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3j8GLp9U3H7vJHmvxCwpe9Lxss2_qlm1Sk6yw_fVuqSAUPM1hnhmGIeSawR1jSt0Dk1wIxqFkIKWGEzJhUqkMRFGeksnezvb-ObmIcQ0wQoWckIeZo_jtuz613tVhoKl3rVvRhObTtV89UusDTcMWM05tv9sNtPOr1lDjXQq-6zBckjNbdxGvfnVKPp4e3-cv2eLt-XU-W2RGSEiZVHpZg-FGaM2NylkpEcyysSUWJq-5ZijBlKJsLHKLurENXwopWaO4ZKYWU3J76N0GPw6Lqdq00WDX1Q59HyutochzAXwkb47Ite-DG8dVuuCK6QLUCMEBMsHHGNBW29BuxgsqBtX-0ur40jGSHSKxXuFf57_8D7LEdTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862718607</pqid></control><display><type>article</type><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><source>Access via SAGE</source><creator>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</creator><creatorcontrib>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</creatorcontrib><description>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331209104480</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Artificial intelligence ; Fuzzy logic ; Fuzzy set theory ; Genetic algorithms ; Learning ; Mathematical analysis ; Mathematical models ; Optimization ; Programmable logic controllers ; Reinforcement ; Uncertainty</subject><ispartof>Transactions of the Institute of Measurement and Control, 2011-04, Vol.33 (2), p.223-245</ispartof><rights>2010 The Institute of Measurement and Control</rights><rights>SAGE Publications © Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</citedby><cites>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331209104480$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331209104480$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Mohammadi, S.M.A.</creatorcontrib><creatorcontrib>Gharaveisi, A.A.</creatorcontrib><creatorcontrib>Mashinchi, M.</creatorcontrib><creatorcontrib>Vaezi-Nejad, S.M.</creatorcontrib><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><title>Transactions of the Institute of Measurement and Control</title><description>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithms</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Programmable logic controllers</subject><subject>Reinforcement</subject><subject>Uncertainty</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEYhIMoWKt3j8GLp9U3H7vJHmvxCwpe9Lxss2_qlm1Sk6yw_fVuqSAUPM1hnhmGIeSawR1jSt0Dk1wIxqFkIKWGEzJhUqkMRFGeksnezvb-ObmIcQ0wQoWckIeZo_jtuz613tVhoKl3rVvRhObTtV89UusDTcMWM05tv9sNtPOr1lDjXQq-6zBckjNbdxGvfnVKPp4e3-cv2eLt-XU-W2RGSEiZVHpZg-FGaM2NylkpEcyysSUWJq-5ZijBlKJsLHKLurENXwopWaO4ZKYWU3J76N0GPw6Lqdq00WDX1Q59HyutochzAXwkb47Ite-DG8dVuuCK6QLUCMEBMsHHGNBW29BuxgsqBtX-0ur40jGSHSKxXuFf57_8D7LEdTY</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Mohammadi, S.M.A.</creator><creator>Gharaveisi, A.A.</creator><creator>Mashinchi, M.</creator><creator>Vaezi-Nejad, S.M.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110401</creationdate><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><author>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithms</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Programmable logic controllers</topic><topic>Reinforcement</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, S.M.A.</creatorcontrib><creatorcontrib>Gharaveisi, A.A.</creatorcontrib><creatorcontrib>Mashinchi, M.</creatorcontrib><creatorcontrib>Vaezi-Nejad, S.M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, S.M.A.</au><au>Gharaveisi, A.A.</au><au>Mashinchi, M.</au><au>Vaezi-Nejad, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary tuning technique for type-2 fuzzy logic controller</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>33</volume><issue>2</issue><spage>223</spage><epage>245</epage><pages>223-245</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331209104480</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2011-04, Vol.33 (2), p.223-245 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_miscellaneous_880655302 |
source | Access via SAGE |
subjects | Algorithms Artificial intelligence Fuzzy logic Fuzzy set theory Genetic algorithms Learning Mathematical analysis Mathematical models Optimization Programmable logic controllers Reinforcement Uncertainty |
title | An evolutionary tuning technique for type-2 fuzzy logic controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20tuning%20technique%20for%20type-2%20fuzzy%20logic%20controller&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Mohammadi,%20S.M.A.&rft.date=2011-04-01&rft.volume=33&rft.issue=2&rft.spage=223&rft.epage=245&rft.pages=223-245&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331209104480&rft_dat=%3Cproquest_cross%3E2324939531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862718607&rft_id=info:pmid/&rft_sage_id=10.1177_0142331209104480&rfr_iscdi=true |