An evolutionary tuning technique for type-2 fuzzy logic controller

Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2011-04, Vol.33 (2), p.223-245
Hauptverfasser: Mohammadi, S.M.A., Gharaveisi, A.A., Mashinchi, M., Vaezi-Nejad, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 2
container_start_page 223
container_title Transactions of the Institute of Measurement and Control
container_volume 33
creator Mohammadi, S.M.A.
Gharaveisi, A.A.
Mashinchi, M.
Vaezi-Nejad, S.M.
description Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.
doi_str_mv 10.1177/0142331209104480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880655302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331209104480</sage_id><sourcerecordid>2324939531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3j8GLp9U3H7vJHmvxCwpe9Lxss2_qlm1Sk6yw_fVuqSAUPM1hnhmGIeSawR1jSt0Dk1wIxqFkIKWGEzJhUqkMRFGeksnezvb-ObmIcQ0wQoWckIeZo_jtuz613tVhoKl3rVvRhObTtV89UusDTcMWM05tv9sNtPOr1lDjXQq-6zBckjNbdxGvfnVKPp4e3-cv2eLt-XU-W2RGSEiZVHpZg-FGaM2NylkpEcyysSUWJq-5ZijBlKJsLHKLurENXwopWaO4ZKYWU3J76N0GPw6Lqdq00WDX1Q59HyutochzAXwkb47Ite-DG8dVuuCK6QLUCMEBMsHHGNBW29BuxgsqBtX-0ur40jGSHSKxXuFf57_8D7LEdTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862718607</pqid></control><display><type>article</type><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><source>Access via SAGE</source><creator>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</creator><creatorcontrib>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</creatorcontrib><description>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331209104480</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Artificial intelligence ; Fuzzy logic ; Fuzzy set theory ; Genetic algorithms ; Learning ; Mathematical analysis ; Mathematical models ; Optimization ; Programmable logic controllers ; Reinforcement ; Uncertainty</subject><ispartof>Transactions of the Institute of Measurement and Control, 2011-04, Vol.33 (2), p.223-245</ispartof><rights>2010 The Institute of Measurement and Control</rights><rights>SAGE Publications © Apr 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</citedby><cites>FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331209104480$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331209104480$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Mohammadi, S.M.A.</creatorcontrib><creatorcontrib>Gharaveisi, A.A.</creatorcontrib><creatorcontrib>Mashinchi, M.</creatorcontrib><creatorcontrib>Vaezi-Nejad, S.M.</creatorcontrib><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><title>Transactions of the Institute of Measurement and Control</title><description>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Genetic algorithms</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Programmable logic controllers</subject><subject>Reinforcement</subject><subject>Uncertainty</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEYhIMoWKt3j8GLp9U3H7vJHmvxCwpe9Lxss2_qlm1Sk6yw_fVuqSAUPM1hnhmGIeSawR1jSt0Dk1wIxqFkIKWGEzJhUqkMRFGeksnezvb-ObmIcQ0wQoWckIeZo_jtuz613tVhoKl3rVvRhObTtV89UusDTcMWM05tv9sNtPOr1lDjXQq-6zBckjNbdxGvfnVKPp4e3-cv2eLt-XU-W2RGSEiZVHpZg-FGaM2NylkpEcyysSUWJq-5ZijBlKJsLHKLurENXwopWaO4ZKYWU3J76N0GPw6Lqdq00WDX1Q59HyutochzAXwkb47Ite-DG8dVuuCK6QLUCMEBMsHHGNBW29BuxgsqBtX-0ur40jGSHSKxXuFf57_8D7LEdTY</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Mohammadi, S.M.A.</creator><creator>Gharaveisi, A.A.</creator><creator>Mashinchi, M.</creator><creator>Vaezi-Nejad, S.M.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20110401</creationdate><title>An evolutionary tuning technique for type-2 fuzzy logic controller</title><author>Mohammadi, S.M.A. ; Gharaveisi, A.A. ; Mashinchi, M. ; Vaezi-Nejad, S.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-478ba0c2c3882c75194e0cbdf9e6c5a281e40c939dfe2fe8dfd2b3441d7241ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Genetic algorithms</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Programmable logic controllers</topic><topic>Reinforcement</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, S.M.A.</creatorcontrib><creatorcontrib>Gharaveisi, A.A.</creatorcontrib><creatorcontrib>Mashinchi, M.</creatorcontrib><creatorcontrib>Vaezi-Nejad, S.M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, S.M.A.</au><au>Gharaveisi, A.A.</au><au>Mashinchi, M.</au><au>Vaezi-Nejad, S.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary tuning technique for type-2 fuzzy logic controller</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>33</volume><issue>2</issue><spage>223</spage><epage>245</epage><pages>223-245</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Uncertainty is an inherent part of control systems used in real world applications. Various instruments used in such systems produce uncertainty in their measurements and thus influence the integrity of the data collection. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present but type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide more parameters and more design degrees of freedom. There are membership functions that can be parameterized by a few variables and when optimized, the membership optimization problem can be reduced to a parameter optimization problem. This paper deals with the parameter optimization of the type-2 fuzzy membership functions using a new proposed reinforcement learning algorithm in automatic voltage regulator. The results of the proposed method referred to as the Extended Discrete Action Reinforcement Learning Automata algorithm are compared with the results obtained by the Discrete Action Reinforcement Learning Automata algorithm and well known genetic algorithm. The performance of the proposed method on initial error reduction and error convergence issues are investigated by computer simulations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331209104480</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2011-04, Vol.33 (2), p.223-245
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_miscellaneous_880655302
source Access via SAGE
subjects Algorithms
Artificial intelligence
Fuzzy logic
Fuzzy set theory
Genetic algorithms
Learning
Mathematical analysis
Mathematical models
Optimization
Programmable logic controllers
Reinforcement
Uncertainty
title An evolutionary tuning technique for type-2 fuzzy logic controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20tuning%20technique%20for%20type-2%20fuzzy%20logic%20controller&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Mohammadi,%20S.M.A.&rft.date=2011-04-01&rft.volume=33&rft.issue=2&rft.spage=223&rft.epage=245&rft.pages=223-245&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331209104480&rft_dat=%3Cproquest_cross%3E2324939531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862718607&rft_id=info:pmid/&rft_sage_id=10.1177_0142331209104480&rfr_iscdi=true