A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations

This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2008-12, Vol.16 (6), p.1522-1530
1. Verfasser: Liu, Honghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1530
container_issue 6
container_start_page 1522
container_title IEEE transactions on fuzzy systems
container_volume 16
creator Liu, Honghai
description This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k -\bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.
doi_str_mv 10.1109/TFUZZ.2008.2005004
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880654283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4607250</ieee_id><sourcerecordid>34498644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-87987d1653f49692f4e516f4bcf9e81256f3ea12ad05d49cf72c8e8ab8926ec43</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYsoqKN_QDfFha463jyaJksZrAqCOIwbNyHT3kh1JhmTVtFfb-uooAs398V3DlxOkhwQGBMC6nRW3t3fjymAHEoOwDeSHaI4yQAY3-xnECwTBYjtZDfGRwDCcyJ3En2Wlt37-1t625lF05q2ecG0DGaJrz48pdaHdOKdw6pt3EM69XPf_kKNq4fdtd-HKa4CRnTD6l3cS7asWUTc_-qj5K48n00us-ubi6vJ2XVWccraTBZKFjURObNcCUUtx5wIy-eVVSgJzYVlaAg1NeQ1V5UtaCVRmrlUVGDF2Sg5Wfuugn_uMLZ62cQKFwvj0HdRSwki51Synjz-l2ScKyn4YHn0B3z0XXD9F1oRykBSDj1E11AVfIwBrV6FZmnCmyagh2j0ZzR6iEZ_RdOLDteiBhF_BFxAQXNgH6zRiyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912308240</pqid></control><display><type>article</type><title>A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Honghai</creator><creatorcontrib>Liu, Honghai</creatorcontrib><description>This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k -\bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2008.2005004</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Cognitive robotics ; Fuzzy ; Fuzzy logic ; Fuzzy qualitative reasoning ; fuzzy robotics ; Fuzzy set theory ; hybrid representation ; Intelligent robots ; Joining processes ; Kinematics ; Mathematical analysis ; Mathematical models ; Mobile robots ; Orbital robotics ; Representations ; Robot sensing systems ; Robot vision systems ; Robotic assembly ; Robots ; Service robots ; Studies</subject><ispartof>IEEE transactions on fuzzy systems, 2008-12, Vol.16 (6), p.1522-1530</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-87987d1653f49692f4e516f4bcf9e81256f3ea12ad05d49cf72c8e8ab8926ec43</citedby><cites>FETCH-LOGICAL-c423t-87987d1653f49692f4e516f4bcf9e81256f3ea12ad05d49cf72c8e8ab8926ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4607250$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4607250$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Honghai</creatorcontrib><title>A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k -\bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.</description><subject>Artificial intelligence</subject><subject>Cognitive robotics</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy qualitative reasoning</subject><subject>fuzzy robotics</subject><subject>Fuzzy set theory</subject><subject>hybrid representation</subject><subject>Intelligent robots</subject><subject>Joining processes</subject><subject>Kinematics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mobile robots</subject><subject>Orbital robotics</subject><subject>Representations</subject><subject>Robot sensing systems</subject><subject>Robot vision systems</subject><subject>Robotic assembly</subject><subject>Robots</subject><subject>Service robots</subject><subject>Studies</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLxDAUhYsoqKN_QDfFha463jyaJksZrAqCOIwbNyHT3kh1JhmTVtFfb-uooAs398V3DlxOkhwQGBMC6nRW3t3fjymAHEoOwDeSHaI4yQAY3-xnECwTBYjtZDfGRwDCcyJ3En2Wlt37-1t625lF05q2ecG0DGaJrz48pdaHdOKdw6pt3EM69XPf_kKNq4fdtd-HKa4CRnTD6l3cS7asWUTc_-qj5K48n00us-ubi6vJ2XVWccraTBZKFjURObNcCUUtx5wIy-eVVSgJzYVlaAg1NeQ1V5UtaCVRmrlUVGDF2Sg5Wfuugn_uMLZ62cQKFwvj0HdRSwki51Synjz-l2ScKyn4YHn0B3z0XXD9F1oRykBSDj1E11AVfIwBrV6FZmnCmyagh2j0ZzR6iEZ_RdOLDteiBhF_BFxAQXNgH6zRiyU</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Liu, Honghai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081201</creationdate><title>A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations</title><author>Liu, Honghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-87987d1653f49692f4e516f4bcf9e81256f3ea12ad05d49cf72c8e8ab8926ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial intelligence</topic><topic>Cognitive robotics</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy qualitative reasoning</topic><topic>fuzzy robotics</topic><topic>Fuzzy set theory</topic><topic>hybrid representation</topic><topic>Intelligent robots</topic><topic>Joining processes</topic><topic>Kinematics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mobile robots</topic><topic>Orbital robotics</topic><topic>Representations</topic><topic>Robot sensing systems</topic><topic>Robot vision systems</topic><topic>Robotic assembly</topic><topic>Robots</topic><topic>Service robots</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Honghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Honghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2008-12-01</date><risdate>2008</risdate><volume>16</volume><issue>6</issue><spage>1522</spage><epage>1530</epage><pages>1522-1530</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This paper proposes a novel framework for describing articulated robot kinematics motion with the goal of providing a unified representation by combining symbolic or qualitative functions and numerical sensing and control tasks in the context of intelligent robotics. First, fuzzy qualitative robot kinematics that provides theoretical preliminaries for the proposed robot motion representation is revisited. Second, a fuzzy qualitative framework based on clustering techniques is presented to connect numerical and symbolic robot representations. Built on the k -\bb AGOP operator (an extension of the ordered weighted aggregation operators), k-means and Gaussian functions are adapted to model a multimodal density of fuzzy qualitative kinematics parameters of a robot in both Cartesian and joint spaces; on the other hand, a mixture regressor and interpolation method are employed to convert Gaussian symbols into numerical values. Finally, simulation results in a PUMA 560 robot demonstrated that the proposed method effectively provides a two-way connection for robot representations used for both numerical and symbolic robotic tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2008.2005004</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2008-12, Vol.16 (6), p.1522-1530
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_miscellaneous_880654283
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Cognitive robotics
Fuzzy
Fuzzy logic
Fuzzy qualitative reasoning
fuzzy robotics
Fuzzy set theory
hybrid representation
Intelligent robots
Joining processes
Kinematics
Mathematical analysis
Mathematical models
Mobile robots
Orbital robotics
Representations
Robot sensing systems
Robot vision systems
Robotic assembly
Robots
Service robots
Studies
title A Fuzzy Qualitative Framework for Connecting Robot Qualitative and Quantitative Representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fuzzy%20Qualitative%20Framework%20for%20Connecting%20Robot%20Qualitative%20and%20Quantitative%20Representations&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Liu,%20Honghai&rft.date=2008-12-01&rft.volume=16&rft.issue=6&rft.spage=1522&rft.epage=1530&rft.pages=1522-1530&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2008.2005004&rft_dat=%3Cproquest_RIE%3E34498644%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912308240&rft_id=info:pmid/&rft_ieee_id=4607250&rfr_iscdi=true