Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern
This paper investigates the initial yield surface of a new type of hollow sphere structure (HSS). For this new type, the sphere shell is perforated by several holes in order to open the inner sphere volume and surface. Multi-axial tensile loading is applied to investigate the initial yield surface o...
Gespeichert in:
Veröffentlicht in: | Finite elements in analysis and design 2011-07, Vol.47 (7), p.804-811 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 7 |
container_start_page | 804 |
container_title | Finite elements in analysis and design |
container_volume | 47 |
creator | Hosseini, Seyed Mohammad Hossein Öchsner, Andreas Fiedler, Thomas |
description | This paper investigates the initial yield surface of a new type of hollow sphere structure (HSS). For this new type, the sphere shell is perforated by several holes in order to open the inner sphere volume and surface. Multi-axial tensile loading is applied to investigate the initial yield surface of perforated HSS with ideal plastic base material properties. The influence of the hole diameters and different geometries of linking elements on the initial yield surface are shown. The results are compared to classical configurations without perforation. It is shown that the initial yield surface can be represented as a cone in the principal stress coordinate system. Increasing of the hole diameter (decreasing of the average density) decreases the diameter of this cone. Compared to the changes for different hole diameters, the shape of the initial yield surface is less sensitive to the geometry of the link between two spheres. In addition, the elastic properties of PHSS, i.e. Young's modulus and Poisson's ratio, are investigated. To this end, three-dimensional finite element analysis is used to investigate primitive cubic unit cell models. |
doi_str_mv | 10.1016/j.finel.2011.02.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880653512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X11000382</els_id><sourcerecordid>880653512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7bec5080092e6120524a7c6b0987dbd078d55b4c79d3d145124af09cb8bd619d3</originalsourceid><addsrcrecordid>eNp9UE1P3DAQtaoidQv8Ai6-VC2HBNubOM6hhwpBQUKABEjcLMeedL3KxqntLOLUv97ZLuLY00jzPubNI-SEs5IzLs_WZe9HGErBOC-ZKHF8IAuuGlHIVtQfyQJZqlBN9fyJfE5pzRirhawW5M_tvIHorRmoH7eQsv9lsg8jDT3NK8Clzx7BVw-Do2mOvbGwAyeIfYgmg6OrMAzhhaZpBRFoynG2eY6Q6Lf7q4eHU_Sghk7Rb9BqC9TOnbd0MjlDHI_IQW-GBMdv85A8XV48nl8VN3c_r89_3BR2KetcNB3YminGWgGSCwxfmcbKjrWqcZ1jjXJ13VW2ad3S8armiPestZ3qnOS4PCRf975TDL9n_FNvfLIwDGaEMCetFJP1EnXIXO6ZNoaUIvR6F93EV82Z3rWt1_pf23rXtmZC40DVlzd_k7DMPprR-vQuFRWXmKNC3vc9D_DZrYeok_UwWnA-gs3aBf_fO38BKMaYIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880653512</pqid></control><display><type>article</type><title>Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern</title><source>Elsevier ScienceDirect Journals</source><creator>Hosseini, Seyed Mohammad Hossein ; Öchsner, Andreas ; Fiedler, Thomas</creator><creatorcontrib>Hosseini, Seyed Mohammad Hossein ; Öchsner, Andreas ; Fiedler, Thomas</creatorcontrib><description>This paper investigates the initial yield surface of a new type of hollow sphere structure (HSS). For this new type, the sphere shell is perforated by several holes in order to open the inner sphere volume and surface. Multi-axial tensile loading is applied to investigate the initial yield surface of perforated HSS with ideal plastic base material properties. The influence of the hole diameters and different geometries of linking elements on the initial yield surface are shown. The results are compared to classical configurations without perforation. It is shown that the initial yield surface can be represented as a cone in the principal stress coordinate system. Increasing of the hole diameter (decreasing of the average density) decreases the diameter of this cone. Compared to the changes for different hole diameters, the shape of the initial yield surface is less sensitive to the geometry of the link between two spheres. In addition, the elastic properties of PHSS, i.e. Young's modulus and Poisson's ratio, are investigated. To this end, three-dimensional finite element analysis is used to investigate primitive cubic unit cell models.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2011.02.011</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cellular material ; Density ; Design engineering ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; High speed tool steels ; Inelasticity (thermoplasticity, viscoplasticity...) ; Initial yield surface ; Mathematical analysis ; Mathematical models ; Mechanical properties ; Modulus of elasticity ; Physics ; Plasticity ; Shells ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Unit-cell model</subject><ispartof>Finite elements in analysis and design, 2011-07, Vol.47 (7), p.804-811</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-7bec5080092e6120524a7c6b0987dbd078d55b4c79d3d145124af09cb8bd619d3</citedby><cites>FETCH-LOGICAL-c365t-7bec5080092e6120524a7c6b0987dbd078d55b4c79d3d145124af09cb8bd619d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168874X11000382$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24166194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hosseini, Seyed Mohammad Hossein</creatorcontrib><creatorcontrib>Öchsner, Andreas</creatorcontrib><creatorcontrib>Fiedler, Thomas</creatorcontrib><title>Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern</title><title>Finite elements in analysis and design</title><description>This paper investigates the initial yield surface of a new type of hollow sphere structure (HSS). For this new type, the sphere shell is perforated by several holes in order to open the inner sphere volume and surface. Multi-axial tensile loading is applied to investigate the initial yield surface of perforated HSS with ideal plastic base material properties. The influence of the hole diameters and different geometries of linking elements on the initial yield surface are shown. The results are compared to classical configurations without perforation. It is shown that the initial yield surface can be represented as a cone in the principal stress coordinate system. Increasing of the hole diameter (decreasing of the average density) decreases the diameter of this cone. Compared to the changes for different hole diameters, the shape of the initial yield surface is less sensitive to the geometry of the link between two spheres. In addition, the elastic properties of PHSS, i.e. Young's modulus and Poisson's ratio, are investigated. To this end, three-dimensional finite element analysis is used to investigate primitive cubic unit cell models.</description><subject>Cellular material</subject><subject>Density</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High speed tool steels</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Initial yield surface</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Shells</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Unit-cell model</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UE1P3DAQtaoidQv8Ai6-VC2HBNubOM6hhwpBQUKABEjcLMeedL3KxqntLOLUv97ZLuLY00jzPubNI-SEs5IzLs_WZe9HGErBOC-ZKHF8IAuuGlHIVtQfyQJZqlBN9fyJfE5pzRirhawW5M_tvIHorRmoH7eQsv9lsg8jDT3NK8Clzx7BVw-Do2mOvbGwAyeIfYgmg6OrMAzhhaZpBRFoynG2eY6Q6Lf7q4eHU_Sghk7Rb9BqC9TOnbd0MjlDHI_IQW-GBMdv85A8XV48nl8VN3c_r89_3BR2KetcNB3YminGWgGSCwxfmcbKjrWqcZ1jjXJ13VW2ad3S8armiPestZ3qnOS4PCRf975TDL9n_FNvfLIwDGaEMCetFJP1EnXIXO6ZNoaUIvR6F93EV82Z3rWt1_pf23rXtmZC40DVlzd_k7DMPprR-vQuFRWXmKNC3vc9D_DZrYeok_UwWnA-gs3aBf_fO38BKMaYIw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hosseini, Seyed Mohammad Hossein</creator><creator>Öchsner, Andreas</creator><creator>Fiedler, Thomas</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern</title><author>Hosseini, Seyed Mohammad Hossein ; Öchsner, Andreas ; Fiedler, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7bec5080092e6120524a7c6b0987dbd078d55b4c79d3d145124af09cb8bd619d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cellular material</topic><topic>Density</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High speed tool steels</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Initial yield surface</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Shells</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Unit-cell model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Seyed Mohammad Hossein</creatorcontrib><creatorcontrib>Öchsner, Andreas</creatorcontrib><creatorcontrib>Fiedler, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini, Seyed Mohammad Hossein</au><au>Öchsner, Andreas</au><au>Fiedler, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>47</volume><issue>7</issue><spage>804</spage><epage>811</epage><pages>804-811</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>This paper investigates the initial yield surface of a new type of hollow sphere structure (HSS). For this new type, the sphere shell is perforated by several holes in order to open the inner sphere volume and surface. Multi-axial tensile loading is applied to investigate the initial yield surface of perforated HSS with ideal plastic base material properties. The influence of the hole diameters and different geometries of linking elements on the initial yield surface are shown. The results are compared to classical configurations without perforation. It is shown that the initial yield surface can be represented as a cone in the principal stress coordinate system. Increasing of the hole diameter (decreasing of the average density) decreases the diameter of this cone. Compared to the changes for different hole diameters, the shape of the initial yield surface is less sensitive to the geometry of the link between two spheres. In addition, the elastic properties of PHSS, i.e. Young's modulus and Poisson's ratio, are investigated. To this end, three-dimensional finite element analysis is used to investigate primitive cubic unit cell models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2011.02.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-874X |
ispartof | Finite elements in analysis and design, 2011-07, Vol.47 (7), p.804-811 |
issn | 0168-874X 1872-6925 |
language | eng |
recordid | cdi_proquest_miscellaneous_880653512 |
source | Elsevier ScienceDirect Journals |
subjects | Cellular material Density Design engineering Exact sciences and technology Finite element method Fundamental areas of phenomenology (including applications) High speed tool steels Inelasticity (thermoplasticity, viscoplasticity...) Initial yield surface Mathematical analysis Mathematical models Mechanical properties Modulus of elasticity Physics Plasticity Shells Solid mechanics Static elasticity (thermoelasticity...) Structural and continuum mechanics Unit-cell model |
title | Numerical investigation of the initial yield surface of perforated hollow sphere structures (PHSS) in a primitive cubic pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20the%20initial%20yield%20surface%20of%20perforated%20hollow%20sphere%20structures%20(PHSS)%20in%20a%20primitive%20cubic%20pattern&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Hosseini,%20Seyed%20Mohammad%20Hossein&rft.date=2011-07-01&rft.volume=47&rft.issue=7&rft.spage=804&rft.epage=811&rft.pages=804-811&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2011.02.011&rft_dat=%3Cproquest_cross%3E880653512%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880653512&rft_id=info:pmid/&rft_els_id=S0168874X11000382&rfr_iscdi=true |