Physicochemical characterisation of different welding aerosols

Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2011-02, Vol.399 (5), p.1773-1780
Hauptverfasser: Berlinger, B, Benker, N, Weinbruch, S, L`Vov, B, Ebert, M, Koch, W, Ellingsen, D. G, Thomassen, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1780
container_issue 5
container_start_page 1773
container_title Analytical and bioanalytical chemistry
container_volume 399
creator Berlinger, B
Benker, N
Weinbruch, S
L`Vov, B
Ebert, M
Koch, W
Ellingsen, D. G
Thomassen, Y
description Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of an 11-stage cascade impactor. The size distribution of the primary particles of agglomerates, chemical composition and morphology of the particles were examined by TEM. There were significant differences in the particle number size distributions of the different welding aerosols according to the SMPS determinations. The particle mass size distributions determined gravimetrically were, however, not really different. The dominant range with respect to mass was between 0.1 and 1 μm, regardless of the welding technique. Most of the primary particles in all different welding aerosols had diameters between 5 and 40 nm. All types of primary particles had a tendency to form chainlike agglomerates. A clear size dependence of the particle chemical composition was encountered in the case of manual metal arc welding aerosol. Small particles with diameters below 50 nm were mostly metal oxides in contrast to larger particles which also contained more volatile elements (e.g. potassium, fluorine, sodium, sulphur).
doi_str_mv 10.1007/s00216-010-4185-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_880652050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A397420703</galeid><sourcerecordid>A397420703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-63a2d86f463ba6e56fa6cdca739af7f13f904c77491024acaf8bd286f5d863813</originalsourceid><addsrcrecordid>eNqFkU1LHTEUhoNUqrX9AW50du1m9OQ7symIaFsQWrCuw7mZ5N7I3Ikmcyn-ezOMurRkkZA8T0jel5BjCmcUQJ8XAEZVCxRaQY1s9R45pIqalikJH97Wgh2QT6XcA1BpqPpIDhgYIYGzQ_L9z-apRJfcxm-jw6FxG8zoJp9jwSmmsUmh6WMIPvtxav75oY_jukGfU0lD-Uz2Aw7Ff3mZj8jd9dXfy5_tze8fvy4vblonwUyt4sh6o4JQfIXKSxVQud6h5h0GHSgPHQintegoMIEOg1n1rAqyWtxQfkS-Lvc-5PS482Wy21icHwYcfdoVawwoyaD-6b-k0ILX1Gby27skVQqgq_CMni3oGgdv4xjSVEOqo59TS6MPse5f8E4LBhp4FegiuJpTyT7Yhxy3mJ8sBTt3Z5fubO3Ozt1ZXZ2Tl_fsVlvfvxmvZVWALUCpR-PaZ3ufdnmsub976-kiBUwW17VWe3fLgHKgHa8_lPwZgwGr8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660094320</pqid></control><display><type>article</type><title>Physicochemical characterisation of different welding aerosols</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Berlinger, B ; Benker, N ; Weinbruch, S ; L`Vov, B ; Ebert, M ; Koch, W ; Ellingsen, D. G ; Thomassen, Y</creator><creatorcontrib>Berlinger, B ; Benker, N ; Weinbruch, S ; L`Vov, B ; Ebert, M ; Koch, W ; Ellingsen, D. G ; Thomassen, Y</creatorcontrib><description>Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of an 11-stage cascade impactor. The size distribution of the primary particles of agglomerates, chemical composition and morphology of the particles were examined by TEM. There were significant differences in the particle number size distributions of the different welding aerosols according to the SMPS determinations. The particle mass size distributions determined gravimetrically were, however, not really different. The dominant range with respect to mass was between 0.1 and 1 μm, regardless of the welding technique. Most of the primary particles in all different welding aerosols had diameters between 5 and 40 nm. All types of primary particles had a tendency to form chainlike agglomerates. A clear size dependence of the particle chemical composition was encountered in the case of manual metal arc welding aerosol. Small particles with diameters below 50 nm were mostly metal oxides in contrast to larger particles which also contained more volatile elements (e.g. potassium, fluorine, sodium, sulphur).</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-010-4185-7</identifier><identifier>PMID: 20845032</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Aerosols ; Aerosols - analysis ; Aerosols - chemistry ; Agglomerates ; Analytical Chemistry ; anatomy and morphology ; Biochemistry ; Cascades ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Food Science ; Laboratory Medicine ; Metals - chemistry ; Microscopy, Electron, Transmission ; Monitoring/Environmental Analysis ; Original Paper ; Particle Size ; Particle size distribution ; Primary particles ; Scanning mobility particle sizer ; Sodium ; Sulfur ; Surface Properties ; transmission electron microscopy ; Volatilization ; Welding ; Welding aerosol</subject><ispartof>Analytical and bioanalytical chemistry, 2011-02, Vol.399 (5), p.1773-1780</ispartof><rights>Springer-Verlag 2010</rights><rights>COPYRIGHT 2011 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-63a2d86f463ba6e56fa6cdca739af7f13f904c77491024acaf8bd286f5d863813</citedby><cites>FETCH-LOGICAL-c508t-63a2d86f463ba6e56fa6cdca739af7f13f904c77491024acaf8bd286f5d863813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-010-4185-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-010-4185-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20845032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berlinger, B</creatorcontrib><creatorcontrib>Benker, N</creatorcontrib><creatorcontrib>Weinbruch, S</creatorcontrib><creatorcontrib>L`Vov, B</creatorcontrib><creatorcontrib>Ebert, M</creatorcontrib><creatorcontrib>Koch, W</creatorcontrib><creatorcontrib>Ellingsen, D. G</creatorcontrib><creatorcontrib>Thomassen, Y</creatorcontrib><title>Physicochemical characterisation of different welding aerosols</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of an 11-stage cascade impactor. The size distribution of the primary particles of agglomerates, chemical composition and morphology of the particles were examined by TEM. There were significant differences in the particle number size distributions of the different welding aerosols according to the SMPS determinations. The particle mass size distributions determined gravimetrically were, however, not really different. The dominant range with respect to mass was between 0.1 and 1 μm, regardless of the welding technique. Most of the primary particles in all different welding aerosols had diameters between 5 and 40 nm. All types of primary particles had a tendency to form chainlike agglomerates. A clear size dependence of the particle chemical composition was encountered in the case of manual metal arc welding aerosol. Small particles with diameters below 50 nm were mostly metal oxides in contrast to larger particles which also contained more volatile elements (e.g. potassium, fluorine, sodium, sulphur).</description><subject>Aerosols</subject><subject>Aerosols - analysis</subject><subject>Aerosols - chemistry</subject><subject>Agglomerates</subject><subject>Analytical Chemistry</subject><subject>anatomy and morphology</subject><subject>Biochemistry</subject><subject>Cascades</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Food Science</subject><subject>Laboratory Medicine</subject><subject>Metals - chemistry</subject><subject>Microscopy, Electron, Transmission</subject><subject>Monitoring/Environmental Analysis</subject><subject>Original Paper</subject><subject>Particle Size</subject><subject>Particle size distribution</subject><subject>Primary particles</subject><subject>Scanning mobility particle sizer</subject><subject>Sodium</subject><subject>Sulfur</subject><subject>Surface Properties</subject><subject>transmission electron microscopy</subject><subject>Volatilization</subject><subject>Welding</subject><subject>Welding aerosol</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1LHTEUhoNUqrX9AW50du1m9OQ7symIaFsQWrCuw7mZ5N7I3Ikmcyn-ezOMurRkkZA8T0jel5BjCmcUQJ8XAEZVCxRaQY1s9R45pIqalikJH97Wgh2QT6XcA1BpqPpIDhgYIYGzQ_L9z-apRJfcxm-jw6FxG8zoJp9jwSmmsUmh6WMIPvtxav75oY_jukGfU0lD-Uz2Aw7Ff3mZj8jd9dXfy5_tze8fvy4vblonwUyt4sh6o4JQfIXKSxVQud6h5h0GHSgPHQintegoMIEOg1n1rAqyWtxQfkS-Lvc-5PS482Wy21icHwYcfdoVawwoyaD-6b-k0ILX1Gby27skVQqgq_CMni3oGgdv4xjSVEOqo59TS6MPse5f8E4LBhp4FegiuJpTyT7Yhxy3mJ8sBTt3Z5fubO3Ozt1ZXZ2Tl_fsVlvfvxmvZVWALUCpR-PaZ3ufdnmsub976-kiBUwW17VWe3fLgHKgHa8_lPwZgwGr8g</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Berlinger, B</creator><creator>Benker, N</creator><creator>Weinbruch, S</creator><creator>L`Vov, B</creator><creator>Ebert, M</creator><creator>Koch, W</creator><creator>Ellingsen, D. G</creator><creator>Thomassen, Y</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20110201</creationdate><title>Physicochemical characterisation of different welding aerosols</title><author>Berlinger, B ; Benker, N ; Weinbruch, S ; L`Vov, B ; Ebert, M ; Koch, W ; Ellingsen, D. G ; Thomassen, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-63a2d86f463ba6e56fa6cdca739af7f13f904c77491024acaf8bd286f5d863813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosols</topic><topic>Aerosols - analysis</topic><topic>Aerosols - chemistry</topic><topic>Agglomerates</topic><topic>Analytical Chemistry</topic><topic>anatomy and morphology</topic><topic>Biochemistry</topic><topic>Cascades</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Food Science</topic><topic>Laboratory Medicine</topic><topic>Metals - chemistry</topic><topic>Microscopy, Electron, Transmission</topic><topic>Monitoring/Environmental Analysis</topic><topic>Original Paper</topic><topic>Particle Size</topic><topic>Particle size distribution</topic><topic>Primary particles</topic><topic>Scanning mobility particle sizer</topic><topic>Sodium</topic><topic>Sulfur</topic><topic>Surface Properties</topic><topic>transmission electron microscopy</topic><topic>Volatilization</topic><topic>Welding</topic><topic>Welding aerosol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berlinger, B</creatorcontrib><creatorcontrib>Benker, N</creatorcontrib><creatorcontrib>Weinbruch, S</creatorcontrib><creatorcontrib>L`Vov, B</creatorcontrib><creatorcontrib>Ebert, M</creatorcontrib><creatorcontrib>Koch, W</creatorcontrib><creatorcontrib>Ellingsen, D. G</creatorcontrib><creatorcontrib>Thomassen, Y</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berlinger, B</au><au>Benker, N</au><au>Weinbruch, S</au><au>L`Vov, B</au><au>Ebert, M</au><au>Koch, W</au><au>Ellingsen, D. G</au><au>Thomassen, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical characterisation of different welding aerosols</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>399</volume><issue>5</issue><spage>1773</spage><epage>1780</epage><pages>1773-1780</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Physicochemical properties important in exposure characterisation of four different welding aerosols were investigated. Particle number size distributions were determined by scanning mobility particle sizer (SMPS), mass size distributions by separation and weighing the individual size fractions of an 11-stage cascade impactor. The size distribution of the primary particles of agglomerates, chemical composition and morphology of the particles were examined by TEM. There were significant differences in the particle number size distributions of the different welding aerosols according to the SMPS determinations. The particle mass size distributions determined gravimetrically were, however, not really different. The dominant range with respect to mass was between 0.1 and 1 μm, regardless of the welding technique. Most of the primary particles in all different welding aerosols had diameters between 5 and 40 nm. All types of primary particles had a tendency to form chainlike agglomerates. A clear size dependence of the particle chemical composition was encountered in the case of manual metal arc welding aerosol. Small particles with diameters below 50 nm were mostly metal oxides in contrast to larger particles which also contained more volatile elements (e.g. potassium, fluorine, sodium, sulphur).</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20845032</pmid><doi>10.1007/s00216-010-4185-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2011-02, Vol.399 (5), p.1773-1780
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_880652050
source MEDLINE; SpringerNature Journals
subjects Aerosols
Aerosols - analysis
Aerosols - chemistry
Agglomerates
Analytical Chemistry
anatomy and morphology
Biochemistry
Cascades
Characterization and Evaluation of Materials
Chemical composition
Chemistry
Chemistry and Materials Science
Food Science
Laboratory Medicine
Metals - chemistry
Microscopy, Electron, Transmission
Monitoring/Environmental Analysis
Original Paper
Particle Size
Particle size distribution
Primary particles
Scanning mobility particle sizer
Sodium
Sulfur
Surface Properties
transmission electron microscopy
Volatilization
Welding
Welding aerosol
title Physicochemical characterisation of different welding aerosols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T03%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20characterisation%20of%20different%20welding%20aerosols&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Berlinger,%20B&rft.date=2011-02-01&rft.volume=399&rft.issue=5&rft.spage=1773&rft.epage=1780&rft.pages=1773-1780&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-010-4185-7&rft_dat=%3Cgale_proqu%3EA397420703%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660094320&rft_id=info:pmid/20845032&rft_galeid=A397420703&rfr_iscdi=true