Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation

In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2008-06, Vol.17 (6), p.897-907
Hauptverfasser: Hunsop Hong, Schonfeld, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 907
container_issue 6
container_start_page 897
container_title IEEE transactions on image processing
container_volume 17
creator Hunsop Hong
Schonfeld, D.
description In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the covariance matrix in the framework of the maximum-entropy likelihood function, which is difficult to solve analytically. We, therefore, derive the MEEM algorithm by optimizing a lower-bound of the maximum-entropy likelihood function. We note that the classical expectation-maximization (EM) algorithm has been employed previously for 2-D density estimation. We propose to extend the use of the classical EM algorithm for image recovery from randomly sampled data and sensor field estimation from randomly scattered sensor networks. We further propose to use our approach in density estimation, image recovery and sensor field estimation. Computer simulation experiments are used to demonstrate the superior performance of the proposed MEEM algorithm in comparison to existing methods.
doi_str_mv 10.1109/TIP.2008.921996
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880646986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4494455</ieee_id><sourcerecordid>2329136181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-aaa13132a937ec2583767c0993b0b9f11dd439961745215509fd3bb4399e5e733</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYNYbK2uXQgyCOpqXu_NxyRZlvKqD1oqWtdDJpN5psxMXpMZaP3rzfuggouu8nF-91wOh5B3CAtE0Ge3q-8LCqAWmqLW1QtygppjCcDpy3wHIUuJXB-T1yndASAXWL0ix6i4okqJE7K-Ng9-mIdyOU4xbB6L5cPG2clMPozlTvN_do_ivF-H6KffQ9GFWKwGs3bFD2fDmKY42x1ixrb46caU9Uvv-rZYpskPu_E35KgzfXJvD-cp-XW5vL34Vl7dfF1dnF-VlgOfSmMMMmTUaCadpUIxWUkLWrMGGt0hti1nOShKLigKAbprWdNs_5xwkrFT8mXvu4nhfnZpqgefrOt7M7owp1opqHilVZXJz8-SEiQHwXUGP_4H3oU5jjlFnW0Y15Ju957tIRtDStF19Sbm6PGxRqi3VdW5qnpbVb2vKk98ONjOzeDaf_yhmwx8OgAmWdN30YzWpyeOAqOiAszc-z3nnXNPMueacyHYX-oco84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863349723</pqid></control><display><type>article</type><title>Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Hunsop Hong ; Schonfeld, D.</creator><creatorcontrib>Hunsop Hong ; Schonfeld, D.</creatorcontrib><description>In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the covariance matrix in the framework of the maximum-entropy likelihood function, which is difficult to solve analytically. We, therefore, derive the MEEM algorithm by optimizing a lower-bound of the maximum-entropy likelihood function. We note that the classical expectation-maximization (EM) algorithm has been employed previously for 2-D density estimation. We propose to extend the use of the classical EM algorithm for image recovery from randomly sampled data and sensor field estimation from randomly scattered sensor networks. We further propose to use our approach in density estimation, image recovery and sensor field estimation. Computer simulation experiments are used to demonstrate the superior performance of the proposed MEEM algorithm in comparison to existing methods.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2008.921996</identifier><identifier>PMID: 18482885</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation methods ; Computational efficiency ; Computer Simulation ; Covariance matrix ; Data Interpretation, Statistical ; Density ; Density functional theory ; Entropy ; Exact sciences and technology ; Expectation-maximization (EM) ; Expectation-maximization algorithms ; Gaussian mixture model (GMM) ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image reconstruction ; image reconstrution ; Image sensors ; Information, signal and communications theory ; Kernel ; Kernel density estimation ; Likelihood Functions ; Mathematical analysis ; Mathematical models ; maximum entropy ; Models, Statistical ; Parzen density ; Recovery ; Reproducibility of Results ; Sampled data ; Sensitivity and Specificity ; sensor field estimation ; Sensors ; Signal processing ; Signal Processing, Computer-Assisted ; Studies ; Support vector machines ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2008-06, Vol.17 (6), p.897-907</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-aaa13132a937ec2583767c0993b0b9f11dd439961745215509fd3bb4399e5e733</citedby><cites>FETCH-LOGICAL-c404t-aaa13132a937ec2583767c0993b0b9f11dd439961745215509fd3bb4399e5e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4494455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4494455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20325601$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18482885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunsop Hong</creatorcontrib><creatorcontrib>Schonfeld, D.</creatorcontrib><title>Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the covariance matrix in the framework of the maximum-entropy likelihood function, which is difficult to solve analytically. We, therefore, derive the MEEM algorithm by optimizing a lower-bound of the maximum-entropy likelihood function. We note that the classical expectation-maximization (EM) algorithm has been employed previously for 2-D density estimation. We propose to extend the use of the classical EM algorithm for image recovery from randomly sampled data and sensor field estimation from randomly scattered sensor networks. We further propose to use our approach in density estimation, image recovery and sensor field estimation. Computer simulation experiments are used to demonstrate the superior performance of the proposed MEEM algorithm in comparison to existing methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Computational efficiency</subject><subject>Computer Simulation</subject><subject>Covariance matrix</subject><subject>Data Interpretation, Statistical</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Expectation-maximization (EM)</subject><subject>Expectation-maximization algorithms</subject><subject>Gaussian mixture model (GMM)</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>image reconstrution</subject><subject>Image sensors</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Kernel density estimation</subject><subject>Likelihood Functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>maximum entropy</subject><subject>Models, Statistical</subject><subject>Parzen density</subject><subject>Recovery</subject><subject>Reproducibility of Results</subject><subject>Sampled data</subject><subject>Sensitivity and Specificity</subject><subject>sensor field estimation</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1rFTEUxYNYbK2uXQgyCOpqXu_NxyRZlvKqD1oqWtdDJpN5psxMXpMZaP3rzfuggouu8nF-91wOh5B3CAtE0Ge3q-8LCqAWmqLW1QtygppjCcDpy3wHIUuJXB-T1yndASAXWL0ix6i4okqJE7K-Ng9-mIdyOU4xbB6L5cPG2clMPozlTvN_do_ivF-H6KffQ9GFWKwGs3bFD2fDmKY42x1ixrb46caU9Uvv-rZYpskPu_E35KgzfXJvD-cp-XW5vL34Vl7dfF1dnF-VlgOfSmMMMmTUaCadpUIxWUkLWrMGGt0hti1nOShKLigKAbprWdNs_5xwkrFT8mXvu4nhfnZpqgefrOt7M7owp1opqHilVZXJz8-SEiQHwXUGP_4H3oU5jjlFnW0Y15Ju957tIRtDStF19Sbm6PGxRqi3VdW5qnpbVb2vKk98ONjOzeDaf_yhmwx8OgAmWdN30YzWpyeOAqOiAszc-z3nnXNPMueacyHYX-oco84</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Hunsop Hong</creator><creator>Schonfeld, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation</title><author>Hunsop Hong ; Schonfeld, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-aaa13132a937ec2583767c0993b0b9f11dd439961745215509fd3bb4399e5e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Computational efficiency</topic><topic>Computer Simulation</topic><topic>Covariance matrix</topic><topic>Data Interpretation, Statistical</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Expectation-maximization (EM)</topic><topic>Expectation-maximization algorithms</topic><topic>Gaussian mixture model (GMM)</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>image reconstrution</topic><topic>Image sensors</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Kernel density estimation</topic><topic>Likelihood Functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>maximum entropy</topic><topic>Models, Statistical</topic><topic>Parzen density</topic><topic>Recovery</topic><topic>Reproducibility of Results</topic><topic>Sampled data</topic><topic>Sensitivity and Specificity</topic><topic>sensor field estimation</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunsop Hong</creatorcontrib><creatorcontrib>Schonfeld, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hunsop Hong</au><au>Schonfeld, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>17</volume><issue>6</issue><spage>897</spage><epage>907</epage><pages>897-907</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a maximum-entropy expectation-maximization (MEEM) algorithm. We use the proposed algorithm for density estimation. The maximum-entropy constraint is imposed for smoothness of the estimated density function. The derivation of the MEEM algorithm requires determination of the covariance matrix in the framework of the maximum-entropy likelihood function, which is difficult to solve analytically. We, therefore, derive the MEEM algorithm by optimizing a lower-bound of the maximum-entropy likelihood function. We note that the classical expectation-maximization (EM) algorithm has been employed previously for 2-D density estimation. We propose to extend the use of the classical EM algorithm for image recovery from randomly sampled data and sensor field estimation from randomly scattered sensor networks. We further propose to use our approach in density estimation, image recovery and sensor field estimation. Computer simulation experiments are used to demonstrate the superior performance of the proposed MEEM algorithm in comparison to existing methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18482885</pmid><doi>10.1109/TIP.2008.921996</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2008-06, Vol.17 (6), p.897-907
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_880646986
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Approximation methods
Computational efficiency
Computer Simulation
Covariance matrix
Data Interpretation, Statistical
Density
Density functional theory
Entropy
Exact sciences and technology
Expectation-maximization (EM)
Expectation-maximization algorithms
Gaussian mixture model (GMM)
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image reconstruction
image reconstrution
Image sensors
Information, signal and communications theory
Kernel
Kernel density estimation
Likelihood Functions
Mathematical analysis
Mathematical models
maximum entropy
Models, Statistical
Parzen density
Recovery
Reproducibility of Results
Sampled data
Sensitivity and Specificity
sensor field estimation
Sensors
Signal processing
Signal Processing, Computer-Assisted
Studies
Support vector machines
Telecommunications and information theory
title Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum-Entropy%20Expectation-Maximization%20Algorithm%20for%20Image%20Reconstruction%20and%20Sensor%20Field%20Estimation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Hunsop%20Hong&rft.date=2008-06-01&rft.volume=17&rft.issue=6&rft.spage=897&rft.epage=907&rft.pages=897-907&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2008.921996&rft_dat=%3Cproquest_RIE%3E2329136181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863349723&rft_id=info:pmid/18482885&rft_ieee_id=4494455&rfr_iscdi=true