Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects

We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2008-11, Vol.17 (11), p.2186-2200
Hauptverfasser: Sun, Walter, Cetin, MÜjdat, Chan, Raymond, Willsky, Alan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2200
container_issue 11
container_start_page 2186
container_title IEEE transactions on image processing
container_volume 17
creator Sun, Walter
Cetin, MÜjdat
Chan, Raymond
Willsky, Alan S.
description We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.
doi_str_mv 10.1109/TIP.2008.2004638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880646542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648486</ieee_id><sourcerecordid>69724767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</originalsourceid><addsrcrecordid>eNp9kc9rFTEQgINYbK3eBUEWQXvaOvmxSfaordbCg6o8zyGbnWgeu9k22RX635vHWyr04CXJJN8Mk_kIeUXhnFJoP2yvv50zAL1fhOT6CTmhraB1idjTcoZG1YqK9pg8z3kHQEVD5TNyTHWrmGz0Cfm-QZtiiL-q-TdWl_fRjsHlysa-2oYR6x_olpTDH6w-TUvsbbqvLnFGN4cpVpMvgZ_SaLsBq5tuV-7zC3Lk7ZDx5bqfkp9fPm8vvtabm6vri4-b2gmQc-0p6y3jVPoGeo0CO-8UUsaVcIwjcusQgKFVvWTKW8Fta2kHHqBvQQM_JWeHurdpulswz2YM2eEw2IjTko3WIIVsBCvk-_-SsgxDKKkK-PYRuJuWFMsvjJacM9CiLRAcIJemnBN6c5vCWAZjKJi9FVOsmL0Vs1opKW_Wuks3Yv8vYdVQgHcrYLOzg082upAfOAZKat7Kwr0-cAERH56FFFqUBv8CZCKcWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863320849</pqid></control><display><type>article</type><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</creator><creatorcontrib>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</creatorcontrib><description>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2008.2004638</identifier><identifier>PMID: 18972658</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biological and medical sciences ; Blood ; Boundaries ; Cardiac imaging ; Computerized, statistical medical data processing and models in biomedicine ; curve evolution ; Deformation ; Detection, estimation, filtering, equalization, prediction ; Dynamical systems ; Dynamics ; Elasticity ; Exact sciences and technology ; Formability ; Graphical models ; Heart ; Heart Ventricles - anatomy &amp; histology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Information, signal and communications theory ; learning ; left ventricle (LV) ; level sets ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Medical management aid. Diagnosis aid ; Medical sciences ; Motion ; Object detection ; particle filtering ; Pattern recognition ; Pattern Recognition, Automated - methods ; Recursive estimation ; Reproducibility of Results ; Segmentation ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; smoothing ; Smoothing methods ; State estimation ; Sun ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2186-2200</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</citedby><cites>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20768396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18972658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Walter</creatorcontrib><creatorcontrib>Cetin, MÜjdat</creatorcontrib><creatorcontrib>Chan, Raymond</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Boundaries</subject><subject>Cardiac imaging</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>curve evolution</subject><subject>Deformation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Formability</subject><subject>Graphical models</subject><subject>Heart</subject><subject>Heart Ventricles - anatomy &amp; histology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>learning</subject><subject>left ventricle (LV)</subject><subject>level sets</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Motion</subject><subject>Object detection</subject><subject>particle filtering</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recursive estimation</subject><subject>Reproducibility of Results</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>smoothing</subject><subject>Smoothing methods</subject><subject>State estimation</subject><subject>Sun</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9rFTEQgINYbK3eBUEWQXvaOvmxSfaordbCg6o8zyGbnWgeu9k22RX635vHWyr04CXJJN8Mk_kIeUXhnFJoP2yvv50zAL1fhOT6CTmhraB1idjTcoZG1YqK9pg8z3kHQEVD5TNyTHWrmGz0Cfm-QZtiiL-q-TdWl_fRjsHlysa-2oYR6x_olpTDH6w-TUvsbbqvLnFGN4cpVpMvgZ_SaLsBq5tuV-7zC3Lk7ZDx5bqfkp9fPm8vvtabm6vri4-b2gmQc-0p6y3jVPoGeo0CO-8UUsaVcIwjcusQgKFVvWTKW8Fta2kHHqBvQQM_JWeHurdpulswz2YM2eEw2IjTko3WIIVsBCvk-_-SsgxDKKkK-PYRuJuWFMsvjJacM9CiLRAcIJemnBN6c5vCWAZjKJi9FVOsmL0Vs1opKW_Wuks3Yv8vYdVQgHcrYLOzg082upAfOAZKat7Kwr0-cAERH56FFFqUBv8CZCKcWw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Sun, Walter</creator><creator>Cetin, MÜjdat</creator><creator>Chan, Raymond</creator><creator>Willsky, Alan S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><author>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Boundaries</topic><topic>Cardiac imaging</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>curve evolution</topic><topic>Deformation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Formability</topic><topic>Graphical models</topic><topic>Heart</topic><topic>Heart Ventricles - anatomy &amp; histology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>learning</topic><topic>left ventricle (LV)</topic><topic>level sets</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Motion</topic><topic>Object detection</topic><topic>particle filtering</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recursive estimation</topic><topic>Reproducibility of Results</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>smoothing</topic><topic>Smoothing methods</topic><topic>State estimation</topic><topic>Sun</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Walter</creatorcontrib><creatorcontrib>Cetin, MÜjdat</creatorcontrib><creatorcontrib>Chan, Raymond</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Walter</au><au>Cetin, MÜjdat</au><au>Chan, Raymond</au><au>Willsky, Alan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>17</volume><issue>11</issue><spage>2186</spage><epage>2200</epage><pages>2186-2200</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18972658</pmid><doi>10.1109/TIP.2008.2004638</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2186-2200
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_880646542
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Biological and medical sciences
Blood
Boundaries
Cardiac imaging
Computerized, statistical medical data processing and models in biomedicine
curve evolution
Deformation
Detection, estimation, filtering, equalization, prediction
Dynamical systems
Dynamics
Elasticity
Exact sciences and technology
Formability
Graphical models
Heart
Heart Ventricles - anatomy & histology
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Information, signal and communications theory
learning
left ventricle (LV)
level sets
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical models
Medical management aid. Diagnosis aid
Medical sciences
Motion
Object detection
particle filtering
Pattern recognition
Pattern Recognition, Automated - methods
Recursive estimation
Reproducibility of Results
Segmentation
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal, noise
smoothing
Smoothing methods
State estimation
Sun
Telecommunications and information theory
title Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20the%20Dynamics%20and%20Time-Recursive%20Boundary%20Detection%20of%20Deformable%20Objects&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sun,%20Walter&rft.date=2008-11-01&rft.volume=17&rft.issue=11&rft.spage=2186&rft.epage=2200&rft.pages=2186-2200&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2008.2004638&rft_dat=%3Cproquest_RIE%3E69724767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863320849&rft_id=info:pmid/18972658&rft_ieee_id=4648486&rfr_iscdi=true