Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects
We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2008-11, Vol.17 (11), p.2186-2200 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2200 |
---|---|
container_issue | 11 |
container_start_page | 2186 |
container_title | IEEE transactions on image processing |
container_volume | 17 |
creator | Sun, Walter Cetin, MÜjdat Chan, Raymond Willsky, Alan S. |
description | We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object. |
doi_str_mv | 10.1109/TIP.2008.2004638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_880646542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4648486</ieee_id><sourcerecordid>69724767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</originalsourceid><addsrcrecordid>eNp9kc9rFTEQgINYbK3eBUEWQXvaOvmxSfaordbCg6o8zyGbnWgeu9k22RX635vHWyr04CXJJN8Mk_kIeUXhnFJoP2yvv50zAL1fhOT6CTmhraB1idjTcoZG1YqK9pg8z3kHQEVD5TNyTHWrmGz0Cfm-QZtiiL-q-TdWl_fRjsHlysa-2oYR6x_olpTDH6w-TUvsbbqvLnFGN4cpVpMvgZ_SaLsBq5tuV-7zC3Lk7ZDx5bqfkp9fPm8vvtabm6vri4-b2gmQc-0p6y3jVPoGeo0CO-8UUsaVcIwjcusQgKFVvWTKW8Fta2kHHqBvQQM_JWeHurdpulswz2YM2eEw2IjTko3WIIVsBCvk-_-SsgxDKKkK-PYRuJuWFMsvjJacM9CiLRAcIJemnBN6c5vCWAZjKJi9FVOsmL0Vs1opKW_Wuks3Yv8vYdVQgHcrYLOzg082upAfOAZKat7Kwr0-cAERH56FFFqUBv8CZCKcWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863320849</pqid></control><display><type>article</type><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</creator><creatorcontrib>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</creatorcontrib><description>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2008.2004638</identifier><identifier>PMID: 18972658</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biological and medical sciences ; Blood ; Boundaries ; Cardiac imaging ; Computerized, statistical medical data processing and models in biomedicine ; curve evolution ; Deformation ; Detection, estimation, filtering, equalization, prediction ; Dynamical systems ; Dynamics ; Elasticity ; Exact sciences and technology ; Formability ; Graphical models ; Heart ; Heart Ventricles - anatomy & histology ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Information, signal and communications theory ; learning ; left ventricle (LV) ; level sets ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Mathematical models ; Medical management aid. Diagnosis aid ; Medical sciences ; Motion ; Object detection ; particle filtering ; Pattern recognition ; Pattern Recognition, Automated - methods ; Recursive estimation ; Reproducibility of Results ; Segmentation ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; smoothing ; Smoothing methods ; State estimation ; Sun ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2186-2200</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</citedby><cites>FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4648486$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4648486$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20768396$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18972658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Walter</creatorcontrib><creatorcontrib>Cetin, MÜjdat</creatorcontrib><creatorcontrib>Chan, Raymond</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Blood</subject><subject>Boundaries</subject><subject>Cardiac imaging</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>curve evolution</subject><subject>Deformation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Formability</subject><subject>Graphical models</subject><subject>Heart</subject><subject>Heart Ventricles - anatomy & histology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Information, signal and communications theory</subject><subject>learning</subject><subject>left ventricle (LV)</subject><subject>level sets</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mathematical models</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Motion</subject><subject>Object detection</subject><subject>particle filtering</subject><subject>Pattern recognition</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Recursive estimation</subject><subject>Reproducibility of Results</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>smoothing</subject><subject>Smoothing methods</subject><subject>State estimation</subject><subject>Sun</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9rFTEQgINYbK3eBUEWQXvaOvmxSfaordbCg6o8zyGbnWgeu9k22RX635vHWyr04CXJJN8Mk_kIeUXhnFJoP2yvv50zAL1fhOT6CTmhraB1idjTcoZG1YqK9pg8z3kHQEVD5TNyTHWrmGz0Cfm-QZtiiL-q-TdWl_fRjsHlysa-2oYR6x_olpTDH6w-TUvsbbqvLnFGN4cpVpMvgZ_SaLsBq5tuV-7zC3Lk7ZDx5bqfkp9fPm8vvtabm6vri4-b2gmQc-0p6y3jVPoGeo0CO-8UUsaVcIwjcusQgKFVvWTKW8Fta2kHHqBvQQM_JWeHurdpulswz2YM2eEw2IjTko3WIIVsBCvk-_-SsgxDKKkK-PYRuJuWFMsvjJacM9CiLRAcIJemnBN6c5vCWAZjKJi9FVOsmL0Vs1opKW_Wuks3Yv8vYdVQgHcrYLOzg082upAfOAZKat7Kwr0-cAERH56FFFqUBv8CZCKcWw</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Sun, Walter</creator><creator>Cetin, MÜjdat</creator><creator>Chan, Raymond</creator><creator>Willsky, Alan S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</title><author>Sun, Walter ; Cetin, MÜjdat ; Chan, Raymond ; Willsky, Alan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f12da2316f50d8e4ebfc7e12374c23ee3ace002ea7d627fa43a9a1b0f00d90803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Blood</topic><topic>Boundaries</topic><topic>Cardiac imaging</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>curve evolution</topic><topic>Deformation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Formability</topic><topic>Graphical models</topic><topic>Heart</topic><topic>Heart Ventricles - anatomy & histology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Information, signal and communications theory</topic><topic>learning</topic><topic>left ventricle (LV)</topic><topic>level sets</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mathematical models</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Motion</topic><topic>Object detection</topic><topic>particle filtering</topic><topic>Pattern recognition</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Recursive estimation</topic><topic>Reproducibility of Results</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>smoothing</topic><topic>Smoothing methods</topic><topic>State estimation</topic><topic>Sun</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Walter</creatorcontrib><creatorcontrib>Cetin, MÜjdat</creatorcontrib><creatorcontrib>Chan, Raymond</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Walter</au><au>Cetin, MÜjdat</au><au>Chan, Raymond</au><au>Willsky, Alan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>17</volume><issue>11</issue><spage>2186</spage><epage>2200</epage><pages>2186-2200</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although this paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18972658</pmid><doi>10.1109/TIP.2008.2004638</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2008-11, Vol.17 (11), p.2186-2200 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_880646542 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial Intelligence Biological and medical sciences Blood Boundaries Cardiac imaging Computerized, statistical medical data processing and models in biomedicine curve evolution Deformation Detection, estimation, filtering, equalization, prediction Dynamical systems Dynamics Elasticity Exact sciences and technology Formability Graphical models Heart Heart Ventricles - anatomy & histology Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Information, signal and communications theory learning left ventricle (LV) level sets magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical models Medical management aid. Diagnosis aid Medical sciences Motion Object detection particle filtering Pattern recognition Pattern Recognition, Automated - methods Recursive estimation Reproducibility of Results Segmentation Sensitivity and Specificity Signal and communications theory Signal processing Signal, noise smoothing Smoothing methods State estimation Sun Telecommunications and information theory |
title | Learning the Dynamics and Time-Recursive Boundary Detection of Deformable Objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20the%20Dynamics%20and%20Time-Recursive%20Boundary%20Detection%20of%20Deformable%20Objects&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Sun,%20Walter&rft.date=2008-11-01&rft.volume=17&rft.issue=11&rft.spage=2186&rft.epage=2200&rft.pages=2186-2200&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2008.2004638&rft_dat=%3Cproquest_RIE%3E69724767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863320849&rft_id=info:pmid/18972658&rft_ieee_id=4648486&rfr_iscdi=true |