Exact infinite-time statistics of the Loschmidt echo for a quantum quench

The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-07, Vol.107 (1), p.010403-010403, Article 010403
Hauptverfasser: Campos Venuti, Lorenzo, Jacobson, N Tobias, Santra, Siddhartha, Zanardi, Paolo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 010403
container_issue 1
container_start_page 010403
container_title Physical review letters
container_volume 107
creator Campos Venuti, Lorenzo
Jacobson, N Tobias
Santra, Siddhartha
Zanardi, Paolo
description The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.
doi_str_mv 10.1103/physrevlett.107.010403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880140089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>880140089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-2eb749b82840dea78b2de7bd4177b34cf6c35fb844443bd7da7710ce03f56c593</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMobk6_wsibT503TdqkjzKmDgqK6HNJ0oRG-mc26XDf3oxN78vhXs65B34ILQmsCAH6sGsOfjT71oSwIsBXQIABvUDzuBQJJ4RdojkAJUkBwGfoxvsvACBpLq7RLCW84Fmaz9F28yN1wK63rnfBJMF1Bvsgg_PBaY8Hi0NjcDl43XSuDtjoZsB2GLHE35Psw9RFNb1ubtGVla03d2ddoM-nzcf6JSlfn7frxzLRLGUhSY3irFAiFQxqI7lQaW24qhnhXFGmba5pZpVgcaiqeS05J6ANUJvlOivoAt2f_u7GITb7UHXOa9O2sjfD5CshgDAAcXTmJ6ceBx9p2Wo3uk6Oh4pAdaRYvUWK72ZfRorxxqsTxRhcnism1Zn6P_aHjf4CljpxhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880140089</pqid></control><display><type>article</type><title>Exact infinite-time statistics of the Loschmidt echo for a quantum quench</title><source>American Physical Society Journals</source><creator>Campos Venuti, Lorenzo ; Jacobson, N Tobias ; Santra, Siddhartha ; Zanardi, Paolo</creator><creatorcontrib>Campos Venuti, Lorenzo ; Jacobson, N Tobias ; Santra, Siddhartha ; Zanardi, Paolo</creatorcontrib><description>The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.107.010403</identifier><identifier>PMID: 21797526</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2011-07, Vol.107 (1), p.010403-010403, Article 010403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-2eb749b82840dea78b2de7bd4177b34cf6c35fb844443bd7da7710ce03f56c593</citedby><cites>FETCH-LOGICAL-c424t-2eb749b82840dea78b2de7bd4177b34cf6c35fb844443bd7da7710ce03f56c593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21797526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campos Venuti, Lorenzo</creatorcontrib><creatorcontrib>Jacobson, N Tobias</creatorcontrib><creatorcontrib>Santra, Siddhartha</creatorcontrib><creatorcontrib>Zanardi, Paolo</creatorcontrib><title>Exact infinite-time statistics of the Loschmidt echo for a quantum quench</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMobk6_wsibT503TdqkjzKmDgqK6HNJ0oRG-mc26XDf3oxN78vhXs65B34ILQmsCAH6sGsOfjT71oSwIsBXQIABvUDzuBQJJ4RdojkAJUkBwGfoxvsvACBpLq7RLCW84Fmaz9F28yN1wK63rnfBJMF1Bvsgg_PBaY8Hi0NjcDl43XSuDtjoZsB2GLHE35Psw9RFNb1ubtGVla03d2ddoM-nzcf6JSlfn7frxzLRLGUhSY3irFAiFQxqI7lQaW24qhnhXFGmba5pZpVgcaiqeS05J6ANUJvlOivoAt2f_u7GITb7UHXOa9O2sjfD5CshgDAAcXTmJ6ceBx9p2Wo3uk6Oh4pAdaRYvUWK72ZfRorxxqsTxRhcnism1Zn6P_aHjf4CljpxhA</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Campos Venuti, Lorenzo</creator><creator>Jacobson, N Tobias</creator><creator>Santra, Siddhartha</creator><creator>Zanardi, Paolo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110701</creationdate><title>Exact infinite-time statistics of the Loschmidt echo for a quantum quench</title><author>Campos Venuti, Lorenzo ; Jacobson, N Tobias ; Santra, Siddhartha ; Zanardi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-2eb749b82840dea78b2de7bd4177b34cf6c35fb844443bd7da7710ce03f56c593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos Venuti, Lorenzo</creatorcontrib><creatorcontrib>Jacobson, N Tobias</creatorcontrib><creatorcontrib>Santra, Siddhartha</creatorcontrib><creatorcontrib>Zanardi, Paolo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos Venuti, Lorenzo</au><au>Jacobson, N Tobias</au><au>Santra, Siddhartha</au><au>Zanardi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact infinite-time statistics of the Loschmidt echo for a quantum quench</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>107</volume><issue>1</issue><spage>010403</spage><epage>010403</epage><pages>010403-010403</pages><artnum>010403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The equilibration dynamics of a closed quantum system is encoded in the long-time distribution function of generic observables. In this Letter we consider the Loschmidt echo generalized to finite temperature, and show that we can obtain an exact expression for its long-time distribution for a closed system described by a quantum XY chain following a sudden quench. In the thermodynamic limit the logarithm of the Loschmidt echo becomes normally distributed, whereas for small quenches in the opposite, quasicritical regime, the distribution function acquires a universal double-peaked form indicating poor equilibration. These findings, obtained by a central limit theorem-type result, extend to completely general models in the small-quench regime.</abstract><cop>United States</cop><pmid>21797526</pmid><doi>10.1103/physrevlett.107.010403</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-07, Vol.107 (1), p.010403-010403, Article 010403
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_880140089
source American Physical Society Journals
title Exact infinite-time statistics of the Loschmidt echo for a quantum quench
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20infinite-time%20statistics%20of%20the%20Loschmidt%20echo%20for%20a%20quantum%20quench&rft.jtitle=Physical%20review%20letters&rft.au=Campos%20Venuti,%20Lorenzo&rft.date=2011-07-01&rft.volume=107&rft.issue=1&rft.spage=010403&rft.epage=010403&rft.pages=010403-010403&rft.artnum=010403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.107.010403&rft_dat=%3Cproquest_cross%3E880140089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880140089&rft_id=info:pmid/21797526&rfr_iscdi=true