Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome

To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6Mb on chromosomes 5, 10,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kidney international 2011-08, Vol.80 (4), p.389-396
Hauptverfasser: Sanna-Cherchi, Simone, Burgess, Katelyn E., Nees, Shannon N., Caridi, Gianluca, Weng, Patricia L., Dagnino, Monica, Bodria, Monica, Carrea, Alba, Allegretta, Maddalena A., Kim, Hyunjae R., Perry, Brittany J., Gigante, Maddalena, Clark, Lorraine N., Kisselev, Sergey, Cusi, Daniele, Gesualdo, Loreto, Allegri, Landino, Scolari, Francesco, D'Agati, Vivette, Shapiro, Lawrence S., Pecoraro, Carmine, Palomero, Teresa, Ghiggeri, Gian M., Gharavi, Ali G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 4
container_start_page 389
container_title Kidney international
container_volume 80
creator Sanna-Cherchi, Simone
Burgess, Katelyn E.
Nees, Shannon N.
Caridi, Gianluca
Weng, Patricia L.
Dagnino, Monica
Bodria, Monica
Carrea, Alba
Allegretta, Maddalena A.
Kim, Hyunjae R.
Perry, Brittany J.
Gigante, Maddalena
Clark, Lorraine N.
Kisselev, Sergey
Cusi, Daniele
Gesualdo, Loreto
Allegri, Landino
Scolari, Francesco
D'Agati, Vivette
Shapiro, Lawrence S.
Pecoraro, Carmine
Palomero, Teresa
Ghiggeri, Gian M.
Gharavi, Ali G.
description To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.
doi_str_mv 10.1038/ki.2011.148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_880138847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0085253815550485</els_id><sourcerecordid>2469137671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-38a65da8e31f7639a98d74fc6ceb95124d28ab2614f94bff78ffdb2b2ce134ba3</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4Modls9eZcgiILMOpn8mMxRyqqF1V704GnIJC9t2p1kmzdT7LH_uVl3VRDxFB58-L5834eQZ6xesprrt9dh2dSMLZnQD8iCyYZXrJXyIVnUtZZVI7k-IseIV3WZO14_JkcNU12rGV-Q-9X3NAJFuJkh2hAvaHAQp-ADOPrp2zlbURMd_bw6WzNqkNoyBWcmoBcQAalPmV7Oo4nUzFPCNJoNzWABMdyW2AlyCq7KgAEnEycaYXuZ0xQsxbvoctn9hDzyZoPw9PCekK_vV19OP1br8w9np-_WlRWKTRXXRklnNHDmW8U702nXCm-VhaGTrBGu0WZoFBO-E4P3rfbeDc3QWGBcDIafkFf73G1OpSxO_RjQwmZjIqQZe61rxrUWbSFf_5fcXV12qlZdQV_8hV6lOcfSo9edYK0QShTozR6yOSFm8P02h9Hku5L0M6y_Dv1OYV8UFvr5IXIeRnC_2V_OCvDyABi0ZuOzKeLwDye4Ulzuasg9B-WqtwFyjzYUyeBCMTT1LoV_fuAHhmO2oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894174464</pqid></control><display><type>article</type><title>Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sanna-Cherchi, Simone ; Burgess, Katelyn E. ; Nees, Shannon N. ; Caridi, Gianluca ; Weng, Patricia L. ; Dagnino, Monica ; Bodria, Monica ; Carrea, Alba ; Allegretta, Maddalena A. ; Kim, Hyunjae R. ; Perry, Brittany J. ; Gigante, Maddalena ; Clark, Lorraine N. ; Kisselev, Sergey ; Cusi, Daniele ; Gesualdo, Loreto ; Allegri, Landino ; Scolari, Francesco ; D'Agati, Vivette ; Shapiro, Lawrence S. ; Pecoraro, Carmine ; Palomero, Teresa ; Ghiggeri, Gian M. ; Gharavi, Ali G.</creator><creatorcontrib>Sanna-Cherchi, Simone ; Burgess, Katelyn E. ; Nees, Shannon N. ; Caridi, Gianluca ; Weng, Patricia L. ; Dagnino, Monica ; Bodria, Monica ; Carrea, Alba ; Allegretta, Maddalena A. ; Kim, Hyunjae R. ; Perry, Brittany J. ; Gigante, Maddalena ; Clark, Lorraine N. ; Kisselev, Sergey ; Cusi, Daniele ; Gesualdo, Loreto ; Allegri, Landino ; Scolari, Francesco ; D'Agati, Vivette ; Shapiro, Lawrence S. ; Pecoraro, Carmine ; Palomero, Teresa ; Ghiggeri, Gian M. ; Gharavi, Ali G.</creatorcontrib><description>To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.</description><identifier>ISSN: 0085-2538</identifier><identifier>EISSN: 1523-1755</identifier><identifier>DOI: 10.1038/ki.2011.148</identifier><identifier>PMID: 21697813</identifier><identifier>CODEN: KDYIA5</identifier><language>eng</language><publisher>Basingstoke: Elsevier Inc</publisher><subject>Actin ; Biological and medical sciences ; Case-Control Studies ; chromosome 15 ; chromosome 5 ; Chromosomes, Human, Pair 15 ; Cytoskeleton ; DNA Glycosylases - chemistry ; DNA Glycosylases - genetics ; DNA Mutational Analysis ; DNA repair ; Endonuclease ; Enzymes ; Exome ; Gene Frequency ; Gene mapping ; Genetic Association Studies ; Genetic Predisposition to Disease ; Genotyping ; Glomerulonephritis ; homozygosity mapping ; Homozygote ; Humans ; Italy ; Kidney ; Medical sciences ; Models, Molecular ; Mutation ; Mutation, Missense ; Myosin ; Myosin Type I - chemistry ; Myosin Type I - genetics ; Nephrology. Urinary tract diseases ; Nephropathies. Renovascular diseases. Renal failure ; Nephrotic syndrome ; Nephrotic Syndrome - congenital ; Nephrotic Syndrome - genetics ; New York City ; next-generation sequencing ; Pedigree ; Phenotype ; Protein Conformation ; Siblings ; Structure-Activity Relationship</subject><ispartof>Kidney international, 2011-08, Vol.80 (4), p.389-396</ispartof><rights>2011 International Society of Nephrology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Aug 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-38a65da8e31f7639a98d74fc6ceb95124d28ab2614f94bff78ffdb2b2ce134ba3</citedby><cites>FETCH-LOGICAL-c461t-38a65da8e31f7639a98d74fc6ceb95124d28ab2614f94bff78ffdb2b2ce134ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24366357$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21697813$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanna-Cherchi, Simone</creatorcontrib><creatorcontrib>Burgess, Katelyn E.</creatorcontrib><creatorcontrib>Nees, Shannon N.</creatorcontrib><creatorcontrib>Caridi, Gianluca</creatorcontrib><creatorcontrib>Weng, Patricia L.</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Bodria, Monica</creatorcontrib><creatorcontrib>Carrea, Alba</creatorcontrib><creatorcontrib>Allegretta, Maddalena A.</creatorcontrib><creatorcontrib>Kim, Hyunjae R.</creatorcontrib><creatorcontrib>Perry, Brittany J.</creatorcontrib><creatorcontrib>Gigante, Maddalena</creatorcontrib><creatorcontrib>Clark, Lorraine N.</creatorcontrib><creatorcontrib>Kisselev, Sergey</creatorcontrib><creatorcontrib>Cusi, Daniele</creatorcontrib><creatorcontrib>Gesualdo, Loreto</creatorcontrib><creatorcontrib>Allegri, Landino</creatorcontrib><creatorcontrib>Scolari, Francesco</creatorcontrib><creatorcontrib>D'Agati, Vivette</creatorcontrib><creatorcontrib>Shapiro, Lawrence S.</creatorcontrib><creatorcontrib>Pecoraro, Carmine</creatorcontrib><creatorcontrib>Palomero, Teresa</creatorcontrib><creatorcontrib>Ghiggeri, Gian M.</creatorcontrib><creatorcontrib>Gharavi, Ali G.</creatorcontrib><title>Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome</title><title>Kidney international</title><addtitle>Kidney Int</addtitle><description>To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.</description><subject>Actin</subject><subject>Biological and medical sciences</subject><subject>Case-Control Studies</subject><subject>chromosome 15</subject><subject>chromosome 5</subject><subject>Chromosomes, Human, Pair 15</subject><subject>Cytoskeleton</subject><subject>DNA Glycosylases - chemistry</subject><subject>DNA Glycosylases - genetics</subject><subject>DNA Mutational Analysis</subject><subject>DNA repair</subject><subject>Endonuclease</subject><subject>Enzymes</subject><subject>Exome</subject><subject>Gene Frequency</subject><subject>Gene mapping</subject><subject>Genetic Association Studies</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotyping</subject><subject>Glomerulonephritis</subject><subject>homozygosity mapping</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Italy</subject><subject>Kidney</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Myosin</subject><subject>Myosin Type I - chemistry</subject><subject>Myosin Type I - genetics</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Nephropathies. Renovascular diseases. Renal failure</subject><subject>Nephrotic syndrome</subject><subject>Nephrotic Syndrome - congenital</subject><subject>Nephrotic Syndrome - genetics</subject><subject>New York City</subject><subject>next-generation sequencing</subject><subject>Pedigree</subject><subject>Phenotype</subject><subject>Protein Conformation</subject><subject>Siblings</subject><subject>Structure-Activity Relationship</subject><issn>0085-2538</issn><issn>1523-1755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9rFDEUx4Modls9eZcgiILMOpn8mMxRyqqF1V704GnIJC9t2p1kmzdT7LH_uVl3VRDxFB58-L5834eQZ6xesprrt9dh2dSMLZnQD8iCyYZXrJXyIVnUtZZVI7k-IseIV3WZO14_JkcNU12rGV-Q-9X3NAJFuJkh2hAvaHAQp-ADOPrp2zlbURMd_bw6WzNqkNoyBWcmoBcQAalPmV7Oo4nUzFPCNJoNzWABMdyW2AlyCq7KgAEnEycaYXuZ0xQsxbvoctn9hDzyZoPw9PCekK_vV19OP1br8w9np-_WlRWKTRXXRklnNHDmW8U702nXCm-VhaGTrBGu0WZoFBO-E4P3rfbeDc3QWGBcDIafkFf73G1OpSxO_RjQwmZjIqQZe61rxrUWbSFf_5fcXV12qlZdQV_8hV6lOcfSo9edYK0QShTozR6yOSFm8P02h9Hku5L0M6y_Dv1OYV8UFvr5IXIeRnC_2V_OCvDyABi0ZuOzKeLwDye4Ulzuasg9B-WqtwFyjzYUyeBCMTT1LoV_fuAHhmO2oA</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Sanna-Cherchi, Simone</creator><creator>Burgess, Katelyn E.</creator><creator>Nees, Shannon N.</creator><creator>Caridi, Gianluca</creator><creator>Weng, Patricia L.</creator><creator>Dagnino, Monica</creator><creator>Bodria, Monica</creator><creator>Carrea, Alba</creator><creator>Allegretta, Maddalena A.</creator><creator>Kim, Hyunjae R.</creator><creator>Perry, Brittany J.</creator><creator>Gigante, Maddalena</creator><creator>Clark, Lorraine N.</creator><creator>Kisselev, Sergey</creator><creator>Cusi, Daniele</creator><creator>Gesualdo, Loreto</creator><creator>Allegri, Landino</creator><creator>Scolari, Francesco</creator><creator>D'Agati, Vivette</creator><creator>Shapiro, Lawrence S.</creator><creator>Pecoraro, Carmine</creator><creator>Palomero, Teresa</creator><creator>Ghiggeri, Gian M.</creator><creator>Gharavi, Ali G.</creator><general>Elsevier Inc</general><general>Nature Publishing Group</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20110801</creationdate><title>Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome</title><author>Sanna-Cherchi, Simone ; Burgess, Katelyn E. ; Nees, Shannon N. ; Caridi, Gianluca ; Weng, Patricia L. ; Dagnino, Monica ; Bodria, Monica ; Carrea, Alba ; Allegretta, Maddalena A. ; Kim, Hyunjae R. ; Perry, Brittany J. ; Gigante, Maddalena ; Clark, Lorraine N. ; Kisselev, Sergey ; Cusi, Daniele ; Gesualdo, Loreto ; Allegri, Landino ; Scolari, Francesco ; D'Agati, Vivette ; Shapiro, Lawrence S. ; Pecoraro, Carmine ; Palomero, Teresa ; Ghiggeri, Gian M. ; Gharavi, Ali G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-38a65da8e31f7639a98d74fc6ceb95124d28ab2614f94bff78ffdb2b2ce134ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actin</topic><topic>Biological and medical sciences</topic><topic>Case-Control Studies</topic><topic>chromosome 15</topic><topic>chromosome 5</topic><topic>Chromosomes, Human, Pair 15</topic><topic>Cytoskeleton</topic><topic>DNA Glycosylases - chemistry</topic><topic>DNA Glycosylases - genetics</topic><topic>DNA Mutational Analysis</topic><topic>DNA repair</topic><topic>Endonuclease</topic><topic>Enzymes</topic><topic>Exome</topic><topic>Gene Frequency</topic><topic>Gene mapping</topic><topic>Genetic Association Studies</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotyping</topic><topic>Glomerulonephritis</topic><topic>homozygosity mapping</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Italy</topic><topic>Kidney</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Myosin</topic><topic>Myosin Type I - chemistry</topic><topic>Myosin Type I - genetics</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Nephropathies. Renovascular diseases. Renal failure</topic><topic>Nephrotic syndrome</topic><topic>Nephrotic Syndrome - congenital</topic><topic>Nephrotic Syndrome - genetics</topic><topic>New York City</topic><topic>next-generation sequencing</topic><topic>Pedigree</topic><topic>Phenotype</topic><topic>Protein Conformation</topic><topic>Siblings</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanna-Cherchi, Simone</creatorcontrib><creatorcontrib>Burgess, Katelyn E.</creatorcontrib><creatorcontrib>Nees, Shannon N.</creatorcontrib><creatorcontrib>Caridi, Gianluca</creatorcontrib><creatorcontrib>Weng, Patricia L.</creatorcontrib><creatorcontrib>Dagnino, Monica</creatorcontrib><creatorcontrib>Bodria, Monica</creatorcontrib><creatorcontrib>Carrea, Alba</creatorcontrib><creatorcontrib>Allegretta, Maddalena A.</creatorcontrib><creatorcontrib>Kim, Hyunjae R.</creatorcontrib><creatorcontrib>Perry, Brittany J.</creatorcontrib><creatorcontrib>Gigante, Maddalena</creatorcontrib><creatorcontrib>Clark, Lorraine N.</creatorcontrib><creatorcontrib>Kisselev, Sergey</creatorcontrib><creatorcontrib>Cusi, Daniele</creatorcontrib><creatorcontrib>Gesualdo, Loreto</creatorcontrib><creatorcontrib>Allegri, Landino</creatorcontrib><creatorcontrib>Scolari, Francesco</creatorcontrib><creatorcontrib>D'Agati, Vivette</creatorcontrib><creatorcontrib>Shapiro, Lawrence S.</creatorcontrib><creatorcontrib>Pecoraro, Carmine</creatorcontrib><creatorcontrib>Palomero, Teresa</creatorcontrib><creatorcontrib>Ghiggeri, Gian M.</creatorcontrib><creatorcontrib>Gharavi, Ali G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Kidney international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanna-Cherchi, Simone</au><au>Burgess, Katelyn E.</au><au>Nees, Shannon N.</au><au>Caridi, Gianluca</au><au>Weng, Patricia L.</au><au>Dagnino, Monica</au><au>Bodria, Monica</au><au>Carrea, Alba</au><au>Allegretta, Maddalena A.</au><au>Kim, Hyunjae R.</au><au>Perry, Brittany J.</au><au>Gigante, Maddalena</au><au>Clark, Lorraine N.</au><au>Kisselev, Sergey</au><au>Cusi, Daniele</au><au>Gesualdo, Loreto</au><au>Allegri, Landino</au><au>Scolari, Francesco</au><au>D'Agati, Vivette</au><au>Shapiro, Lawrence S.</au><au>Pecoraro, Carmine</au><au>Palomero, Teresa</au><au>Ghiggeri, Gian M.</au><au>Gharavi, Ali G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome</atitle><jtitle>Kidney international</jtitle><addtitle>Kidney Int</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>80</volume><issue>4</issue><spage>389</spage><epage>396</epage><pages>389-396</pages><issn>0085-2538</issn><eissn>1523-1755</eissn><coden>KDYIA5</coden><abstract>To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.</abstract><cop>Basingstoke</cop><pub>Elsevier Inc</pub><pmid>21697813</pmid><doi>10.1038/ki.2011.148</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0085-2538
ispartof Kidney international, 2011-08, Vol.80 (4), p.389-396
issn 0085-2538
1523-1755
language eng
recordid cdi_proquest_miscellaneous_880138847
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Actin
Biological and medical sciences
Case-Control Studies
chromosome 15
chromosome 5
Chromosomes, Human, Pair 15
Cytoskeleton
DNA Glycosylases - chemistry
DNA Glycosylases - genetics
DNA Mutational Analysis
DNA repair
Endonuclease
Enzymes
Exome
Gene Frequency
Gene mapping
Genetic Association Studies
Genetic Predisposition to Disease
Genotyping
Glomerulonephritis
homozygosity mapping
Homozygote
Humans
Italy
Kidney
Medical sciences
Models, Molecular
Mutation
Mutation, Missense
Myosin
Myosin Type I - chemistry
Myosin Type I - genetics
Nephrology. Urinary tract diseases
Nephropathies. Renovascular diseases. Renal failure
Nephrotic syndrome
Nephrotic Syndrome - congenital
Nephrotic Syndrome - genetics
New York City
next-generation sequencing
Pedigree
Phenotype
Protein Conformation
Siblings
Structure-Activity Relationship
title Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exome%20sequencing%20identified%20MYO1E%20and%20NEIL1%20as%20candidate%20genes%20for%20human%20autosomal%20recessive%20steroid-resistant%20nephrotic%20syndrome&rft.jtitle=Kidney%20international&rft.au=Sanna-Cherchi,%20Simone&rft.date=2011-08-01&rft.volume=80&rft.issue=4&rft.spage=389&rft.epage=396&rft.pages=389-396&rft.issn=0085-2538&rft.eissn=1523-1755&rft.coden=KDYIA5&rft_id=info:doi/10.1038/ki.2011.148&rft_dat=%3Cproquest_cross%3E2469137671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894174464&rft_id=info:pmid/21697813&rft_els_id=S0085253815550485&rfr_iscdi=true