A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations

In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2009-11, Vol.61 (9), p.1053-1062
Hauptverfasser: Sanyasiraju, Y. V. S. S., Chandhini, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue 9
container_start_page 1053
container_title International journal for numerical methods in fluids
container_volume 61
creator Sanyasiraju, Y. V. S. S.
Chandhini, G.
description In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local RBF grid‐free upwind schemes based on the exact velocity direction are stable and produce accurate results on domains discretized even with scattered distribution of nodal points. Copyright © 2009 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.1990
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_879480175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>879480175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3650-986d65fae6a992ae0274820e36934b40c348717cc7e259368b13d81c46ce724a3</originalsourceid><addsrcrecordid>eNp1kMFuEzEQhi0EEqEg8Qi-ILi4jO1de30sLSmoUZFQEUfL8Y6LYbNO7d2GvD2OEvXGaUb_fPo1-gh5y-GcA4iPYejPuTHwjCw4GM1AKvmcLEBozgQY_pK8KuU3ABjRyQUZL-iYJqRppNMu0Xm7i2NPy5TdhPcRCw0p0--flmztCvb0PseehYxIi_-Fm3qfEi1peKzBhK7fU5_GR_RTTCPrYwhzqRvFh9kdovKavAhuKPjmNM_Ij-Xnu8svbPXt-uvlxYp5qVpgplO9aoND5YwRDuv3TScApTKyWTfgZdNprr3XKFojVbfmsu-4b5RHLRonz8j7Y-82p4cZy2Q3sXgcBjdimovttGk64Lqt5Icj6XMqJWOw2xw3Lu8tB3swaqtRezBa0XenUle8G0J2o4_liRdVbweyqRw7crs44P6_fXa5ujr1nvhYHf594l3-Y5WWurU_b6-tuLu5ArgV9kb-A6WVkxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879480175</pqid></control><display><type>article</type><title>A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations</title><source>Wiley Online Library All Journals</source><creator>Sanyasiraju, Y. V. S. S. ; Chandhini, G.</creator><creatorcontrib>Sanyasiraju, Y. V. S. S. ; Chandhini, G.</creatorcontrib><description>In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local RBF grid‐free upwind schemes based on the exact velocity direction are stable and produce accurate results on domains discretized even with scattered distribution of nodal points. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1990</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; convection-diffusion ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; gridfree ; multiquadric ; numerical ; Physics ; radial basis function ; upwind</subject><ispartof>International journal for numerical methods in fluids, 2009-11, Vol.61 (9), p.1053-1062</ispartof><rights>Copyright © 2009 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3650-986d65fae6a992ae0274820e36934b40c348717cc7e259368b13d81c46ce724a3</citedby><cites>FETCH-LOGICAL-c3650-986d65fae6a992ae0274820e36934b40c348717cc7e259368b13d81c46ce724a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1990$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1990$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22098034$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanyasiraju, Y. V. S. S.</creatorcontrib><creatorcontrib>Chandhini, G.</creatorcontrib><title>A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local RBF grid‐free upwind schemes based on the exact velocity direction are stable and produce accurate results on domains discretized even with scattered distribution of nodal points. Copyright © 2009 John Wiley &amp; Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>convection-diffusion</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>gridfree</subject><subject>multiquadric</subject><subject>numerical</subject><subject>Physics</subject><subject>radial basis function</subject><subject>upwind</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMFuEzEQhi0EEqEg8Qi-ILi4jO1de30sLSmoUZFQEUfL8Y6LYbNO7d2GvD2OEvXGaUb_fPo1-gh5y-GcA4iPYejPuTHwjCw4GM1AKvmcLEBozgQY_pK8KuU3ABjRyQUZL-iYJqRppNMu0Xm7i2NPy5TdhPcRCw0p0--flmztCvb0PseehYxIi_-Fm3qfEi1peKzBhK7fU5_GR_RTTCPrYwhzqRvFh9kdovKavAhuKPjmNM_Ij-Xnu8svbPXt-uvlxYp5qVpgplO9aoND5YwRDuv3TScApTKyWTfgZdNprr3XKFojVbfmsu-4b5RHLRonz8j7Y-82p4cZy2Q3sXgcBjdimovttGk64Lqt5Icj6XMqJWOw2xw3Lu8tB3swaqtRezBa0XenUle8G0J2o4_liRdVbweyqRw7crs44P6_fXa5ujr1nvhYHf594l3-Y5WWurU_b6-tuLu5ArgV9kb-A6WVkxo</recordid><startdate>20091130</startdate><enddate>20091130</enddate><creator>Sanyasiraju, Y. V. S. S.</creator><creator>Chandhini, G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20091130</creationdate><title>A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations</title><author>Sanyasiraju, Y. V. S. S. ; Chandhini, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3650-986d65fae6a992ae0274820e36934b40c348717cc7e259368b13d81c46ce724a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Computational methods in fluid dynamics</topic><topic>convection-diffusion</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>gridfree</topic><topic>multiquadric</topic><topic>numerical</topic><topic>Physics</topic><topic>radial basis function</topic><topic>upwind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyasiraju, Y. V. S. S.</creatorcontrib><creatorcontrib>Chandhini, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyasiraju, Y. V. S. S.</au><au>Chandhini, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-11-30</date><risdate>2009</risdate><volume>61</volume><issue>9</issue><spage>1053</spage><epage>1062</epage><pages>1053-1062</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, two radial basis function (RBF)‐based local grid‐free upwind schemes have been discussed for convection–diffusion equations. The schemes have been validated over some convection–diffusion problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local RBF grid‐free upwind schemes based on the exact velocity direction are stable and produce accurate results on domains discretized even with scattered distribution of nodal points. Copyright © 2009 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.1990</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2009-11, Vol.61 (9), p.1053-1062
issn 0271-2091
1097-0363
1097-0363
language eng
recordid cdi_proquest_miscellaneous_879480175
source Wiley Online Library All Journals
subjects Computational methods in fluid dynamics
convection-diffusion
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
gridfree
multiquadric
numerical
Physics
radial basis function
upwind
title A note on two upwind strategies for RBF-based grid-free schemes to solve steady convection-diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20two%20upwind%20strategies%20for%20RBF-based%20grid-free%20schemes%20to%20solve%20steady%20convection-diffusion%20equations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Sanyasiraju,%20Y.%20V.%20S.%20S.&rft.date=2009-11-30&rft.volume=61&rft.issue=9&rft.spage=1053&rft.epage=1062&rft.pages=1053-1062&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1990&rft_dat=%3Cproquest_cross%3E879480175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879480175&rft_id=info:pmid/&rfr_iscdi=true