Semiautomated detection of cerebral microbleeds in magnetic resonance images

Abstract Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2011-07, Vol.29 (6), p.844-852
Hauptverfasser: Barnes, Samuel R.S, Haacke, E. Mark, Ayaz, Muhammad, Boikov, Alexander S, Kirsch, Wolff, Kido, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 852
container_issue 6
container_start_page 844
container_title Magnetic resonance imaging
container_volume 29
creator Barnes, Samuel R.S
Haacke, E. Mark
Ayaz, Muhammad
Boikov, Alexander S
Kirsch, Wolff
Kido, Dan
description Abstract Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.
doi_str_mv 10.1016/j.mri.2011.02.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_879478877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0730725X1100097X</els_id><sourcerecordid>873120068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-6890cd77df05045ad1d029f1782126d562e5c1234db288286f94c54839b9c8313</originalsourceid><addsrcrecordid>eNqNkUFr3DAQhUVpabZpf0AuxbeevNVIliURKISQtIWFHpJAbkKWxkFb20olO5B_H5lNeughFAYGhvcezPcIOQG6BQrt1_12TGHLKMCWsjLqDdmAkrwWSjdvyYZKTmvJxO0R-ZDznlIqGBfvyREDIaGRekN2VzgGu8xxtDP6yuOMbg5xqmJfOUzYJTtUY3ApdgOiz1WYqtHeTTgHVyXMcbKTwyqUG-aP5F1vh4yfnvcxubm8uD7_Ue9-ff95frarnWjUXLdKU-el9D0VtBHWg6dM9yAVA9Z60TIUDhhvfMeUYqrtdbM6ue60Uxz4MflyyL1P8c-CeTZjyA6HwU4Yl2yU1I1USsr_UHJglLaqKOGgLK_mnLA396l8lR4NULPSNntTaJuVtqGszOr5_Jy-dCP6v44XvEVwehBgofEQMJnsAhZgPqTC2fgYXo3_9o_bDWEKzg6_8RHzPi5pKpgNmFwM5mqte20boDSt5S1_ApxIo8s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>873120068</pqid></control><display><type>article</type><title>Semiautomated detection of cerebral microbleeds in magnetic resonance images</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Barnes, Samuel R.S ; Haacke, E. Mark ; Ayaz, Muhammad ; Boikov, Alexander S ; Kirsch, Wolff ; Kido, Dan</creator><creatorcontrib>Barnes, Samuel R.S ; Haacke, E. Mark ; Ayaz, Muhammad ; Boikov, Alexander S ; Kirsch, Wolff ; Kido, Dan</creatorcontrib><description>Abstract Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2011.02.028</identifier><identifier>PMID: 21571479</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Alzheimer Disease - pathology ; biomarkers ; Cerebral Hemorrhage - diagnosis ; Cerebral microbleed ; Dementia, Vascular - diagnosis ; False Positive Reactions ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Learning algorithms ; Longitudinal Studies ; Magnetic Resonance Angiography - methods ; Magnetic resonance imaging ; Pattern Recognition, Automated ; Radiology ; Reviews ; Segmentation ; Sensitivity and Specificity ; Statistics ; Support vector machine ; Susceptibility weighted imaging</subject><ispartof>Magnetic resonance imaging, 2011-07, Vol.29 (6), p.844-852</ispartof><rights>Elsevier Inc.</rights><rights>2011 Elsevier Inc.</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-6890cd77df05045ad1d029f1782126d562e5c1234db288286f94c54839b9c8313</citedby><cites>FETCH-LOGICAL-c548t-6890cd77df05045ad1d029f1782126d562e5c1234db288286f94c54839b9c8313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mri.2011.02.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21571479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnes, Samuel R.S</creatorcontrib><creatorcontrib>Haacke, E. Mark</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><creatorcontrib>Boikov, Alexander S</creatorcontrib><creatorcontrib>Kirsch, Wolff</creatorcontrib><creatorcontrib>Kido, Dan</creatorcontrib><title>Semiautomated detection of cerebral microbleeds in magnetic resonance images</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Abstract Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.</description><subject>Algorithms</subject><subject>Alzheimer Disease - pathology</subject><subject>biomarkers</subject><subject>Cerebral Hemorrhage - diagnosis</subject><subject>Cerebral microbleed</subject><subject>Dementia, Vascular - diagnosis</subject><subject>False Positive Reactions</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Learning algorithms</subject><subject>Longitudinal Studies</subject><subject>Magnetic Resonance Angiography - methods</subject><subject>Magnetic resonance imaging</subject><subject>Pattern Recognition, Automated</subject><subject>Radiology</subject><subject>Reviews</subject><subject>Segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Statistics</subject><subject>Support vector machine</subject><subject>Susceptibility weighted imaging</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFr3DAQhUVpabZpf0AuxbeevNVIliURKISQtIWFHpJAbkKWxkFb20olO5B_H5lNeughFAYGhvcezPcIOQG6BQrt1_12TGHLKMCWsjLqDdmAkrwWSjdvyYZKTmvJxO0R-ZDznlIqGBfvyREDIaGRekN2VzgGu8xxtDP6yuOMbg5xqmJfOUzYJTtUY3ApdgOiz1WYqtHeTTgHVyXMcbKTwyqUG-aP5F1vh4yfnvcxubm8uD7_Ue9-ff95frarnWjUXLdKU-el9D0VtBHWg6dM9yAVA9Z60TIUDhhvfMeUYqrtdbM6ue60Uxz4MflyyL1P8c-CeTZjyA6HwU4Yl2yU1I1USsr_UHJglLaqKOGgLK_mnLA396l8lR4NULPSNntTaJuVtqGszOr5_Jy-dCP6v44XvEVwehBgofEQMJnsAhZgPqTC2fgYXo3_9o_bDWEKzg6_8RHzPi5pKpgNmFwM5mqte20boDSt5S1_ApxIo8s</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Barnes, Samuel R.S</creator><creator>Haacke, E. Mark</creator><creator>Ayaz, Muhammad</creator><creator>Boikov, Alexander S</creator><creator>Kirsch, Wolff</creator><creator>Kido, Dan</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20110701</creationdate><title>Semiautomated detection of cerebral microbleeds in magnetic resonance images</title><author>Barnes, Samuel R.S ; Haacke, E. Mark ; Ayaz, Muhammad ; Boikov, Alexander S ; Kirsch, Wolff ; Kido, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-6890cd77df05045ad1d029f1782126d562e5c1234db288286f94c54839b9c8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Alzheimer Disease - pathology</topic><topic>biomarkers</topic><topic>Cerebral Hemorrhage - diagnosis</topic><topic>Cerebral microbleed</topic><topic>Dementia, Vascular - diagnosis</topic><topic>False Positive Reactions</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Learning algorithms</topic><topic>Longitudinal Studies</topic><topic>Magnetic Resonance Angiography - methods</topic><topic>Magnetic resonance imaging</topic><topic>Pattern Recognition, Automated</topic><topic>Radiology</topic><topic>Reviews</topic><topic>Segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Statistics</topic><topic>Support vector machine</topic><topic>Susceptibility weighted imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, Samuel R.S</creatorcontrib><creatorcontrib>Haacke, E. Mark</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><creatorcontrib>Boikov, Alexander S</creatorcontrib><creatorcontrib>Kirsch, Wolff</creatorcontrib><creatorcontrib>Kido, Dan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, Samuel R.S</au><au>Haacke, E. Mark</au><au>Ayaz, Muhammad</au><au>Boikov, Alexander S</au><au>Kirsch, Wolff</au><au>Kido, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiautomated detection of cerebral microbleeds in magnetic resonance images</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2011-07-01</date><risdate>2011</risdate><volume>29</volume><issue>6</issue><spage>844</spage><epage>852</epage><pages>844-852</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Abstract Cerebral microbleeds (CMBs) are increasingly being recognized as an important biomarker for neurovascular diseases. So far, all attempts to count and quantify them have relied on manual methods that are time-consuming and can be inconsistent. A technique is presented that semiautomatically identifies CMBs in susceptibility weighted images (SWI). This will both reduce the processing time and increase the consistency over manual methods. This technique relies on a statistical thresholding algorithm to identify hypointensities within the image. A support vector machine (SVM) supervised learning classifier is then used to separate true CMB from other marked hypointensities. The classifier relies on identifying features such as shape and signal intensity to identify true CMBs. The results from the automated section are then subject to manual review to remove false-positives. This technique is able to achieve a sensitivity of 81.7% compared with the gold standard of manual review and consensus by multiple reviewers. In subjects with many CMBs, this presents a faster alternative to current manual techniques at the cost of some lost sensitivity.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>21571479</pmid><doi>10.1016/j.mri.2011.02.028</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2011-07, Vol.29 (6), p.844-852
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_879478877
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Alzheimer Disease - pathology
biomarkers
Cerebral Hemorrhage - diagnosis
Cerebral microbleed
Dementia, Vascular - diagnosis
False Positive Reactions
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Learning algorithms
Longitudinal Studies
Magnetic Resonance Angiography - methods
Magnetic resonance imaging
Pattern Recognition, Automated
Radiology
Reviews
Segmentation
Sensitivity and Specificity
Statistics
Support vector machine
Susceptibility weighted imaging
title Semiautomated detection of cerebral microbleeds in magnetic resonance images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiautomated%20detection%20of%20cerebral%20microbleeds%20in%20magnetic%20resonance%20images&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Barnes,%20Samuel%20R.S&rft.date=2011-07-01&rft.volume=29&rft.issue=6&rft.spage=844&rft.epage=852&rft.pages=844-852&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2011.02.028&rft_dat=%3Cproquest_cross%3E873120068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=873120068&rft_id=info:pmid/21571479&rft_els_id=1_s2_0_S0730725X1100097X&rfr_iscdi=true