An integrated semiconductor device enabling non-optical genome sequencing
The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated c...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2011-07, Vol.475 (7356), p.348-352 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 7356 |
container_start_page | 348 |
container_title | Nature (London) |
container_volume | 475 |
creator | Rothberg, Jonathan M. Hinz, Wolfgang Rearick, Todd M. Schultz, Jonathan Mileski, William Davey, Mel Leamon, John H. Johnson, Kim Milgrew, Mark J. Edwards, Matthew Hoon, Jeremy Simons, Jan F. Marran, David Myers, Jason W. Davidson, John F. Branting, Annika Nobile, John R. Puc, Bernard P. Light, David Clark, Travis A. Huber, Martin Branciforte, Jeffrey T. Stoner, Isaac B. Cawley, Simon E. Lyons, Michael Fu, Yutao Homer, Nils Sedova, Marina Miao, Xin Reed, Brian Sabina, Jeffrey Feierstein, Erika Schorn, Michelle Alanjary, Mohammad Dimalanta, Eileen Dressman, Devin Kasinskas, Rachel Sokolsky, Tanya Fidanza, Jacqueline A. Namsaraev, Eugeni McKernan, Kevin J. Williams, Alan Roth, G. Thomas Bustillo, James |
description | The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
'Post-light' genome sequencing chips
Progress towards cheaper and more compact DNA sequencing devices is limited by a number of factors, including the need for imaging technology. A new DNA sequencing technology that does away with optical readout, instead gathering sequence data by directly sensing hydrogen ions produced by template-directed DNA synthesis, offers a route to low cost and scalable sequencing on a massively parallel semiconductor-sensing device or ion chip. The reactions are performed using all natural nucleotides, and the individual ion-sensitive chips are disposable and inexpensive. The system has been used to sequence three bacterial genomes and a human genome: that of Gordon Moore of Moore's law fame. |
doi_str_mv | 10.1038/nature10242 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_878816745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A262583581</galeid><sourcerecordid>A262583581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-29c6693a29290d34b513ab4ba96e2108592f28e90d066e1a977c821db4b3c6cb3</originalsourceid><addsrcrecordid>eNpt0Utv1DAQAGALgehSOHFHEQhxoAG_Yk-Oq4rSSpV6gbPlOJPIVWJv7QSp_x5Xu7AF9eTDfJ4nIW8Z_cKogK_BLmtCRrnkz8iGSa1qqUA_JxtKOdQUhDohr3K-pZQ2TMuX5IQzrRUFtiFX21D5sOCY7IJ9lXH2LoZ-dUtMVY-_vMMKg-0mH8YqxFDH3eKdnaoRQ5yxfLhbMbgSfU1eDHbK-ObwnpKfF99-nF_W1zffr86317WTWi41b51SrbC85S3thewaJmwnO9sq5IxC0_KBA5YYVQqZbbV2wFlfiHDKdeKUfNrn3aVYaufFzD47nCYbMK7ZgAZgSsumyPf_ydu4plCaMwBUlnVoWtCHPRrthMaHIS7JuoeUZssVb0A0wI6p_lFu5-_MY_R5j1yKOScczC752aZ7w6h5OJV5dKqi3x26W7sZ-7_2z20K-HgANpeND8mWPeejk0JIAFHc2d7lEgojpuOYT9X9DaOqqIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880400070</pqid></control><display><type>article</type><title>An integrated semiconductor device enabling non-optical genome sequencing</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Rothberg, Jonathan M. ; Hinz, Wolfgang ; Rearick, Todd M. ; Schultz, Jonathan ; Mileski, William ; Davey, Mel ; Leamon, John H. ; Johnson, Kim ; Milgrew, Mark J. ; Edwards, Matthew ; Hoon, Jeremy ; Simons, Jan F. ; Marran, David ; Myers, Jason W. ; Davidson, John F. ; Branting, Annika ; Nobile, John R. ; Puc, Bernard P. ; Light, David ; Clark, Travis A. ; Huber, Martin ; Branciforte, Jeffrey T. ; Stoner, Isaac B. ; Cawley, Simon E. ; Lyons, Michael ; Fu, Yutao ; Homer, Nils ; Sedova, Marina ; Miao, Xin ; Reed, Brian ; Sabina, Jeffrey ; Feierstein, Erika ; Schorn, Michelle ; Alanjary, Mohammad ; Dimalanta, Eileen ; Dressman, Devin ; Kasinskas, Rachel ; Sokolsky, Tanya ; Fidanza, Jacqueline A. ; Namsaraev, Eugeni ; McKernan, Kevin J. ; Williams, Alan ; Roth, G. Thomas ; Bustillo, James</creator><creatorcontrib>Rothberg, Jonathan M. ; Hinz, Wolfgang ; Rearick, Todd M. ; Schultz, Jonathan ; Mileski, William ; Davey, Mel ; Leamon, John H. ; Johnson, Kim ; Milgrew, Mark J. ; Edwards, Matthew ; Hoon, Jeremy ; Simons, Jan F. ; Marran, David ; Myers, Jason W. ; Davidson, John F. ; Branting, Annika ; Nobile, John R. ; Puc, Bernard P. ; Light, David ; Clark, Travis A. ; Huber, Martin ; Branciforte, Jeffrey T. ; Stoner, Isaac B. ; Cawley, Simon E. ; Lyons, Michael ; Fu, Yutao ; Homer, Nils ; Sedova, Marina ; Miao, Xin ; Reed, Brian ; Sabina, Jeffrey ; Feierstein, Erika ; Schorn, Michelle ; Alanjary, Mohammad ; Dimalanta, Eileen ; Dressman, Devin ; Kasinskas, Rachel ; Sokolsky, Tanya ; Fidanza, Jacqueline A. ; Namsaraev, Eugeni ; McKernan, Kevin J. ; Williams, Alan ; Roth, G. Thomas ; Bustillo, James</creatorcontrib><description>The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
'Post-light' genome sequencing chips
Progress towards cheaper and more compact DNA sequencing devices is limited by a number of factors, including the need for imaging technology. A new DNA sequencing technology that does away with optical readout, instead gathering sequence data by directly sensing hydrogen ions produced by template-directed DNA synthesis, offers a route to low cost and scalable sequencing on a massively parallel semiconductor-sensing device or ion chip. The reactions are performed using all natural nucleotides, and the individual ion-sensitive chips are disposable and inexpensive. The system has been used to sequence three bacterial genomes and a human genome: that of Gordon Moore of Moore's law fame.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature10242</identifier><identifier>PMID: 21776081</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1888 ; 631/61/514/1948 ; 639/301/119/1000 ; Arrays ; Biological and medical sciences ; Biotechnology ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA sequencing ; Electronics industry ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Genome, Bacterial - genetics ; Genome, Human - genetics ; Genomes ; Genomics - instrumentation ; Genomics - methods ; Humanities and Social Sciences ; Humans ; Integrated circuits ; Light ; Male ; Molecular and cellular biology ; multidisciplinary ; Nucleotide sequencing ; Physiological aspects ; Rhodopseudomonas - genetics ; Science ; Science (multidisciplinary) ; Semiconductors ; Sensors ; Sequence Analysis, DNA - instrumentation ; Sequence Analysis, DNA - methods ; Signal processing ; Vibrio - genetics</subject><ispartof>Nature (London), 2011-07, Vol.475 (7356), p.348-352</ispartof><rights>The Author(s) 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 21, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-29c6693a29290d34b513ab4ba96e2108592f28e90d066e1a977c821db4b3c6cb3</citedby><cites>FETCH-LOGICAL-c474t-29c6693a29290d34b513ab4ba96e2108592f28e90d066e1a977c821db4b3c6cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature10242$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature10242$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24334883$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21776081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rothberg, Jonathan M.</creatorcontrib><creatorcontrib>Hinz, Wolfgang</creatorcontrib><creatorcontrib>Rearick, Todd M.</creatorcontrib><creatorcontrib>Schultz, Jonathan</creatorcontrib><creatorcontrib>Mileski, William</creatorcontrib><creatorcontrib>Davey, Mel</creatorcontrib><creatorcontrib>Leamon, John H.</creatorcontrib><creatorcontrib>Johnson, Kim</creatorcontrib><creatorcontrib>Milgrew, Mark J.</creatorcontrib><creatorcontrib>Edwards, Matthew</creatorcontrib><creatorcontrib>Hoon, Jeremy</creatorcontrib><creatorcontrib>Simons, Jan F.</creatorcontrib><creatorcontrib>Marran, David</creatorcontrib><creatorcontrib>Myers, Jason W.</creatorcontrib><creatorcontrib>Davidson, John F.</creatorcontrib><creatorcontrib>Branting, Annika</creatorcontrib><creatorcontrib>Nobile, John R.</creatorcontrib><creatorcontrib>Puc, Bernard P.</creatorcontrib><creatorcontrib>Light, David</creatorcontrib><creatorcontrib>Clark, Travis A.</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Branciforte, Jeffrey T.</creatorcontrib><creatorcontrib>Stoner, Isaac B.</creatorcontrib><creatorcontrib>Cawley, Simon E.</creatorcontrib><creatorcontrib>Lyons, Michael</creatorcontrib><creatorcontrib>Fu, Yutao</creatorcontrib><creatorcontrib>Homer, Nils</creatorcontrib><creatorcontrib>Sedova, Marina</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Reed, Brian</creatorcontrib><creatorcontrib>Sabina, Jeffrey</creatorcontrib><creatorcontrib>Feierstein, Erika</creatorcontrib><creatorcontrib>Schorn, Michelle</creatorcontrib><creatorcontrib>Alanjary, Mohammad</creatorcontrib><creatorcontrib>Dimalanta, Eileen</creatorcontrib><creatorcontrib>Dressman, Devin</creatorcontrib><creatorcontrib>Kasinskas, Rachel</creatorcontrib><creatorcontrib>Sokolsky, Tanya</creatorcontrib><creatorcontrib>Fidanza, Jacqueline A.</creatorcontrib><creatorcontrib>Namsaraev, Eugeni</creatorcontrib><creatorcontrib>McKernan, Kevin J.</creatorcontrib><creatorcontrib>Williams, Alan</creatorcontrib><creatorcontrib>Roth, G. Thomas</creatorcontrib><creatorcontrib>Bustillo, James</creatorcontrib><title>An integrated semiconductor device enabling non-optical genome sequencing</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
'Post-light' genome sequencing chips
Progress towards cheaper and more compact DNA sequencing devices is limited by a number of factors, including the need for imaging technology. A new DNA sequencing technology that does away with optical readout, instead gathering sequence data by directly sensing hydrogen ions produced by template-directed DNA synthesis, offers a route to low cost and scalable sequencing on a massively parallel semiconductor-sensing device or ion chip. The reactions are performed using all natural nucleotides, and the individual ion-sensitive chips are disposable and inexpensive. The system has been used to sequence three bacterial genomes and a human genome: that of Gordon Moore of Moore's law fame.</description><subject>631/1647/1888</subject><subject>631/61/514/1948</subject><subject>639/301/119/1000</subject><subject>Arrays</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Electronics industry</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Bacterial - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics - instrumentation</subject><subject>Genomics - methods</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Integrated circuits</subject><subject>Light</subject><subject>Male</subject><subject>Molecular and cellular biology</subject><subject>multidisciplinary</subject><subject>Nucleotide sequencing</subject><subject>Physiological aspects</subject><subject>Rhodopseudomonas - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Sequence Analysis, DNA - instrumentation</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Signal processing</subject><subject>Vibrio - genetics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0Utv1DAQAGALgehSOHFHEQhxoAG_Yk-Oq4rSSpV6gbPlOJPIVWJv7QSp_x5Xu7AF9eTDfJ4nIW8Z_cKogK_BLmtCRrnkz8iGSa1qqUA_JxtKOdQUhDohr3K-pZQ2TMuX5IQzrRUFtiFX21D5sOCY7IJ9lXH2LoZ-dUtMVY-_vMMKg-0mH8YqxFDH3eKdnaoRQ5yxfLhbMbgSfU1eDHbK-ObwnpKfF99-nF_W1zffr86317WTWi41b51SrbC85S3thewaJmwnO9sq5IxC0_KBA5YYVQqZbbV2wFlfiHDKdeKUfNrn3aVYaufFzD47nCYbMK7ZgAZgSsumyPf_ydu4plCaMwBUlnVoWtCHPRrthMaHIS7JuoeUZssVb0A0wI6p_lFu5-_MY_R5j1yKOScczC752aZ7w6h5OJV5dKqi3x26W7sZ-7_2z20K-HgANpeND8mWPeejk0JIAFHc2d7lEgojpuOYT9X9DaOqqIU</recordid><startdate>20110721</startdate><enddate>20110721</enddate><creator>Rothberg, Jonathan M.</creator><creator>Hinz, Wolfgang</creator><creator>Rearick, Todd M.</creator><creator>Schultz, Jonathan</creator><creator>Mileski, William</creator><creator>Davey, Mel</creator><creator>Leamon, John H.</creator><creator>Johnson, Kim</creator><creator>Milgrew, Mark J.</creator><creator>Edwards, Matthew</creator><creator>Hoon, Jeremy</creator><creator>Simons, Jan F.</creator><creator>Marran, David</creator><creator>Myers, Jason W.</creator><creator>Davidson, John F.</creator><creator>Branting, Annika</creator><creator>Nobile, John R.</creator><creator>Puc, Bernard P.</creator><creator>Light, David</creator><creator>Clark, Travis A.</creator><creator>Huber, Martin</creator><creator>Branciforte, Jeffrey T.</creator><creator>Stoner, Isaac B.</creator><creator>Cawley, Simon E.</creator><creator>Lyons, Michael</creator><creator>Fu, Yutao</creator><creator>Homer, Nils</creator><creator>Sedova, Marina</creator><creator>Miao, Xin</creator><creator>Reed, Brian</creator><creator>Sabina, Jeffrey</creator><creator>Feierstein, Erika</creator><creator>Schorn, Michelle</creator><creator>Alanjary, Mohammad</creator><creator>Dimalanta, Eileen</creator><creator>Dressman, Devin</creator><creator>Kasinskas, Rachel</creator><creator>Sokolsky, Tanya</creator><creator>Fidanza, Jacqueline A.</creator><creator>Namsaraev, Eugeni</creator><creator>McKernan, Kevin J.</creator><creator>Williams, Alan</creator><creator>Roth, G. Thomas</creator><creator>Bustillo, James</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110721</creationdate><title>An integrated semiconductor device enabling non-optical genome sequencing</title><author>Rothberg, Jonathan M. ; Hinz, Wolfgang ; Rearick, Todd M. ; Schultz, Jonathan ; Mileski, William ; Davey, Mel ; Leamon, John H. ; Johnson, Kim ; Milgrew, Mark J. ; Edwards, Matthew ; Hoon, Jeremy ; Simons, Jan F. ; Marran, David ; Myers, Jason W. ; Davidson, John F. ; Branting, Annika ; Nobile, John R. ; Puc, Bernard P. ; Light, David ; Clark, Travis A. ; Huber, Martin ; Branciforte, Jeffrey T. ; Stoner, Isaac B. ; Cawley, Simon E. ; Lyons, Michael ; Fu, Yutao ; Homer, Nils ; Sedova, Marina ; Miao, Xin ; Reed, Brian ; Sabina, Jeffrey ; Feierstein, Erika ; Schorn, Michelle ; Alanjary, Mohammad ; Dimalanta, Eileen ; Dressman, Devin ; Kasinskas, Rachel ; Sokolsky, Tanya ; Fidanza, Jacqueline A. ; Namsaraev, Eugeni ; McKernan, Kevin J. ; Williams, Alan ; Roth, G. Thomas ; Bustillo, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-29c6693a29290d34b513ab4ba96e2108592f28e90d066e1a977c821db4b3c6cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/1647/1888</topic><topic>631/61/514/1948</topic><topic>639/301/119/1000</topic><topic>Arrays</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Electronics industry</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Bacterial - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics - instrumentation</topic><topic>Genomics - methods</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Integrated circuits</topic><topic>Light</topic><topic>Male</topic><topic>Molecular and cellular biology</topic><topic>multidisciplinary</topic><topic>Nucleotide sequencing</topic><topic>Physiological aspects</topic><topic>Rhodopseudomonas - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Sequence Analysis, DNA - instrumentation</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Signal processing</topic><topic>Vibrio - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothberg, Jonathan M.</creatorcontrib><creatorcontrib>Hinz, Wolfgang</creatorcontrib><creatorcontrib>Rearick, Todd M.</creatorcontrib><creatorcontrib>Schultz, Jonathan</creatorcontrib><creatorcontrib>Mileski, William</creatorcontrib><creatorcontrib>Davey, Mel</creatorcontrib><creatorcontrib>Leamon, John H.</creatorcontrib><creatorcontrib>Johnson, Kim</creatorcontrib><creatorcontrib>Milgrew, Mark J.</creatorcontrib><creatorcontrib>Edwards, Matthew</creatorcontrib><creatorcontrib>Hoon, Jeremy</creatorcontrib><creatorcontrib>Simons, Jan F.</creatorcontrib><creatorcontrib>Marran, David</creatorcontrib><creatorcontrib>Myers, Jason W.</creatorcontrib><creatorcontrib>Davidson, John F.</creatorcontrib><creatorcontrib>Branting, Annika</creatorcontrib><creatorcontrib>Nobile, John R.</creatorcontrib><creatorcontrib>Puc, Bernard P.</creatorcontrib><creatorcontrib>Light, David</creatorcontrib><creatorcontrib>Clark, Travis A.</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Branciforte, Jeffrey T.</creatorcontrib><creatorcontrib>Stoner, Isaac B.</creatorcontrib><creatorcontrib>Cawley, Simon E.</creatorcontrib><creatorcontrib>Lyons, Michael</creatorcontrib><creatorcontrib>Fu, Yutao</creatorcontrib><creatorcontrib>Homer, Nils</creatorcontrib><creatorcontrib>Sedova, Marina</creatorcontrib><creatorcontrib>Miao, Xin</creatorcontrib><creatorcontrib>Reed, Brian</creatorcontrib><creatorcontrib>Sabina, Jeffrey</creatorcontrib><creatorcontrib>Feierstein, Erika</creatorcontrib><creatorcontrib>Schorn, Michelle</creatorcontrib><creatorcontrib>Alanjary, Mohammad</creatorcontrib><creatorcontrib>Dimalanta, Eileen</creatorcontrib><creatorcontrib>Dressman, Devin</creatorcontrib><creatorcontrib>Kasinskas, Rachel</creatorcontrib><creatorcontrib>Sokolsky, Tanya</creatorcontrib><creatorcontrib>Fidanza, Jacqueline A.</creatorcontrib><creatorcontrib>Namsaraev, Eugeni</creatorcontrib><creatorcontrib>McKernan, Kevin J.</creatorcontrib><creatorcontrib>Williams, Alan</creatorcontrib><creatorcontrib>Roth, G. Thomas</creatorcontrib><creatorcontrib>Bustillo, James</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothberg, Jonathan M.</au><au>Hinz, Wolfgang</au><au>Rearick, Todd M.</au><au>Schultz, Jonathan</au><au>Mileski, William</au><au>Davey, Mel</au><au>Leamon, John H.</au><au>Johnson, Kim</au><au>Milgrew, Mark J.</au><au>Edwards, Matthew</au><au>Hoon, Jeremy</au><au>Simons, Jan F.</au><au>Marran, David</au><au>Myers, Jason W.</au><au>Davidson, John F.</au><au>Branting, Annika</au><au>Nobile, John R.</au><au>Puc, Bernard P.</au><au>Light, David</au><au>Clark, Travis A.</au><au>Huber, Martin</au><au>Branciforte, Jeffrey T.</au><au>Stoner, Isaac B.</au><au>Cawley, Simon E.</au><au>Lyons, Michael</au><au>Fu, Yutao</au><au>Homer, Nils</au><au>Sedova, Marina</au><au>Miao, Xin</au><au>Reed, Brian</au><au>Sabina, Jeffrey</au><au>Feierstein, Erika</au><au>Schorn, Michelle</au><au>Alanjary, Mohammad</au><au>Dimalanta, Eileen</au><au>Dressman, Devin</au><au>Kasinskas, Rachel</au><au>Sokolsky, Tanya</au><au>Fidanza, Jacqueline A.</au><au>Namsaraev, Eugeni</au><au>McKernan, Kevin J.</au><au>Williams, Alan</au><au>Roth, G. Thomas</au><au>Bustillo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated semiconductor device enabling non-optical genome sequencing</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-07-21</date><risdate>2011</risdate><volume>475</volume><issue>7356</issue><spage>348</spage><epage>352</epage><pages>348-352</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
'Post-light' genome sequencing chips
Progress towards cheaper and more compact DNA sequencing devices is limited by a number of factors, including the need for imaging technology. A new DNA sequencing technology that does away with optical readout, instead gathering sequence data by directly sensing hydrogen ions produced by template-directed DNA synthesis, offers a route to low cost and scalable sequencing on a massively parallel semiconductor-sensing device or ion chip. The reactions are performed using all natural nucleotides, and the individual ion-sensitive chips are disposable and inexpensive. The system has been used to sequence three bacterial genomes and a human genome: that of Gordon Moore of Moore's law fame.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21776081</pmid><doi>10.1038/nature10242</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2011-07, Vol.475 (7356), p.348-352 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_878816745 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/1647/1888 631/61/514/1948 639/301/119/1000 Arrays Biological and medical sciences Biotechnology Deoxyribonucleic acid Diverse techniques DNA DNA sequencing Electronics industry Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Genome, Bacterial - genetics Genome, Human - genetics Genomes Genomics - instrumentation Genomics - methods Humanities and Social Sciences Humans Integrated circuits Light Male Molecular and cellular biology multidisciplinary Nucleotide sequencing Physiological aspects Rhodopseudomonas - genetics Science Science (multidisciplinary) Semiconductors Sensors Sequence Analysis, DNA - instrumentation Sequence Analysis, DNA - methods Signal processing Vibrio - genetics |
title | An integrated semiconductor device enabling non-optical genome sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20semiconductor%20device%20enabling%20non-optical%20genome%20sequencing&rft.jtitle=Nature%20(London)&rft.au=Rothberg,%20Jonathan%20M.&rft.date=2011-07-21&rft.volume=475&rft.issue=7356&rft.spage=348&rft.epage=352&rft.pages=348-352&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature10242&rft_dat=%3Cgale_proqu%3EA262583581%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880400070&rft_id=info:pmid/21776081&rft_galeid=A262583581&rfr_iscdi=true |