Robust biclustering by sparse singular value decomposition incorporating stability selection
Motivation: Over the past decade, several biclustering approaches have been published in the field of gene expression data analysis. Despite of huge diversity regarding the mathematical concepts of the different biclustering methods, many of them can be related to the singular value decomposition (S...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2011-08, Vol.27 (15), p.2089-2097 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2097 |
---|---|
container_issue | 15 |
container_start_page | 2089 |
container_title | Bioinformatics |
container_volume | 27 |
creator | Sill, Martin Kaiser, Sebastian Benner, Axel Kopp-Schneider, Annette |
description | Motivation: Over the past decade, several biclustering approaches have been published in the field of gene expression data analysis. Despite of huge diversity regarding the mathematical concepts of the different biclustering methods, many of them can be related to the singular value decomposition (SVD). Recently, a sparse SVD approach (SSVD) has been proposed to reveal biclusters in gene expression data. In this article, we propose to incorporate stability selection to improve this method. Stability selection is a subsampling-based variable selection that allows to control Type I error rates. The here proposed S4VD algorithm incorporates this subsampling approach to find stable biclusters, and to estimate the selection probabilities of genes and samples to belong to the biclusters.
Results: So far, the S4VD method is the first biclustering approach that takes the cluster stability regarding perturbations of the data into account. Application of the S4VD algorithm to a lung cancer microarray dataset revealed biclusters that correspond to coregulated genes associated with cancer subtypes. Marker genes for different lung cancer subtypes showed high selection probabilities to belong to the corresponding biclusters. Moreover, the genes associated with the biclusters belong to significantly enriched cancer-related Gene Ontology categories. In a simulation study, the S4VD algorithm outperformed the SSVD algorithm and two other SVD-related biclustering methods in recovering artificial biclusters and in being robust to noisy data.
Availability: R-Code of the S4VD algorithm as well as a documentation can be found at http://s4vd.r-forge.r-project.org/.
Contact:
m.sill@dkfz.de
Supplementary information:
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btr322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_878029011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btr322</oup_id><sourcerecordid>878029011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6f557ffe16542dde799fee16a203c6ba9b036fedc4c118fc64ca2bd33d4a865d3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMo7rr6E5RexFPdfDVtj7L4BYIgehNKkiYSSZuaaYX992bZVfEmc5gZeN55hxehU4IvCa7ZUrngehtiJ0enYanGyCjdQ3PCBc4pLur9NDNR5rzCbIaOAN4xLgjn_BDNKBFMFHU5R69PQU0wZsppn7qJrn_L1DqDQUYwGaR18jJmn9JPJmuNDt0QwI0u9JnrdYhDiOmDJIJRKufdmLTGG70hjtGBlR7Mya4v0MvN9fPqLn94vL1fXT3kmpX1mAtbFKW1hoiC07Y1ZV1bkzZJMdNCyVphJqxpNdeEVFYLriVVLWMtl5UoWrZAF9u7Qwwfk4Gx6Rxo473sTZigqcoK0xoTkshiS-oYAKKxzRBdJ-O6IbjZ5Nr8zbXZ5pp0ZzuHSXWm_VF9B5mA8x0gQUtvo-y1g1-Os1RllTi85cI0_NP7C1lbm2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878029011</pqid></control><display><type>article</type><title>Robust biclustering by sparse singular value decomposition incorporating stability selection</title><source>Oxford Journals Open Access Collection</source><creator>Sill, Martin ; Kaiser, Sebastian ; Benner, Axel ; Kopp-Schneider, Annette</creator><creatorcontrib>Sill, Martin ; Kaiser, Sebastian ; Benner, Axel ; Kopp-Schneider, Annette</creatorcontrib><description>Motivation: Over the past decade, several biclustering approaches have been published in the field of gene expression data analysis. Despite of huge diversity regarding the mathematical concepts of the different biclustering methods, many of them can be related to the singular value decomposition (SVD). Recently, a sparse SVD approach (SSVD) has been proposed to reveal biclusters in gene expression data. In this article, we propose to incorporate stability selection to improve this method. Stability selection is a subsampling-based variable selection that allows to control Type I error rates. The here proposed S4VD algorithm incorporates this subsampling approach to find stable biclusters, and to estimate the selection probabilities of genes and samples to belong to the biclusters.
Results: So far, the S4VD method is the first biclustering approach that takes the cluster stability regarding perturbations of the data into account. Application of the S4VD algorithm to a lung cancer microarray dataset revealed biclusters that correspond to coregulated genes associated with cancer subtypes. Marker genes for different lung cancer subtypes showed high selection probabilities to belong to the corresponding biclusters. Moreover, the genes associated with the biclusters belong to significantly enriched cancer-related Gene Ontology categories. In a simulation study, the S4VD algorithm outperformed the SSVD algorithm and two other SVD-related biclustering methods in recovering artificial biclusters and in being robust to noisy data.
Availability: R-Code of the S4VD algorithm as well as a documentation can be found at http://s4vd.r-forge.r-project.org/.
Contact:
m.sill@dkfz.de
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btr322</identifier><identifier>PMID: 21636597</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Cluster Analysis ; Computational Biology - methods ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Humans ; Lung Neoplasms - genetics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Oligonucleotide Array Sequence Analysis</subject><ispartof>Bioinformatics, 2011-08, Vol.27 (15), p.2089-2097</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6f557ffe16542dde799fee16a203c6ba9b036fedc4c118fc64ca2bd33d4a865d3</citedby><cites>FETCH-LOGICAL-c379t-6f557ffe16542dde799fee16a203c6ba9b036fedc4c118fc64ca2bd33d4a865d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btr322$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24343478$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21636597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sill, Martin</creatorcontrib><creatorcontrib>Kaiser, Sebastian</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><title>Robust biclustering by sparse singular value decomposition incorporating stability selection</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Over the past decade, several biclustering approaches have been published in the field of gene expression data analysis. Despite of huge diversity regarding the mathematical concepts of the different biclustering methods, many of them can be related to the singular value decomposition (SVD). Recently, a sparse SVD approach (SSVD) has been proposed to reveal biclusters in gene expression data. In this article, we propose to incorporate stability selection to improve this method. Stability selection is a subsampling-based variable selection that allows to control Type I error rates. The here proposed S4VD algorithm incorporates this subsampling approach to find stable biclusters, and to estimate the selection probabilities of genes and samples to belong to the biclusters.
Results: So far, the S4VD method is the first biclustering approach that takes the cluster stability regarding perturbations of the data into account. Application of the S4VD algorithm to a lung cancer microarray dataset revealed biclusters that correspond to coregulated genes associated with cancer subtypes. Marker genes for different lung cancer subtypes showed high selection probabilities to belong to the corresponding biclusters. Moreover, the genes associated with the biclusters belong to significantly enriched cancer-related Gene Ontology categories. In a simulation study, the S4VD algorithm outperformed the SSVD algorithm and two other SVD-related biclustering methods in recovering artificial biclusters and in being robust to noisy data.
Availability: R-Code of the S4VD algorithm as well as a documentation can be found at http://s4vd.r-forge.r-project.org/.
Contact:
m.sill@dkfz.de
Supplementary information:
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Cluster Analysis</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Oligonucleotide Array Sequence Analysis</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LxDAQhoMo7rr6E5RexFPdfDVtj7L4BYIgehNKkiYSSZuaaYX992bZVfEmc5gZeN55hxehU4IvCa7ZUrngehtiJ0enYanGyCjdQ3PCBc4pLur9NDNR5rzCbIaOAN4xLgjn_BDNKBFMFHU5R69PQU0wZsppn7qJrn_L1DqDQUYwGaR18jJmn9JPJmuNDt0QwI0u9JnrdYhDiOmDJIJRKufdmLTGG70hjtGBlR7Mya4v0MvN9fPqLn94vL1fXT3kmpX1mAtbFKW1hoiC07Y1ZV1bkzZJMdNCyVphJqxpNdeEVFYLriVVLWMtl5UoWrZAF9u7Qwwfk4Gx6Rxo473sTZigqcoK0xoTkshiS-oYAKKxzRBdJ-O6IbjZ5Nr8zbXZ5pp0ZzuHSXWm_VF9B5mA8x0gQUtvo-y1g1-Os1RllTi85cI0_NP7C1lbm2A</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Sill, Martin</creator><creator>Kaiser, Sebastian</creator><creator>Benner, Axel</creator><creator>Kopp-Schneider, Annette</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110801</creationdate><title>Robust biclustering by sparse singular value decomposition incorporating stability selection</title><author>Sill, Martin ; Kaiser, Sebastian ; Benner, Axel ; Kopp-Schneider, Annette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6f557ffe16542dde799fee16a203c6ba9b036fedc4c118fc64ca2bd33d4a865d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Cluster Analysis</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Oligonucleotide Array Sequence Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sill, Martin</creatorcontrib><creatorcontrib>Kaiser, Sebastian</creatorcontrib><creatorcontrib>Benner, Axel</creatorcontrib><creatorcontrib>Kopp-Schneider, Annette</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sill, Martin</au><au>Kaiser, Sebastian</au><au>Benner, Axel</au><au>Kopp-Schneider, Annette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust biclustering by sparse singular value decomposition incorporating stability selection</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>27</volume><issue>15</issue><spage>2089</spage><epage>2097</epage><pages>2089-2097</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: Over the past decade, several biclustering approaches have been published in the field of gene expression data analysis. Despite of huge diversity regarding the mathematical concepts of the different biclustering methods, many of them can be related to the singular value decomposition (SVD). Recently, a sparse SVD approach (SSVD) has been proposed to reveal biclusters in gene expression data. In this article, we propose to incorporate stability selection to improve this method. Stability selection is a subsampling-based variable selection that allows to control Type I error rates. The here proposed S4VD algorithm incorporates this subsampling approach to find stable biclusters, and to estimate the selection probabilities of genes and samples to belong to the biclusters.
Results: So far, the S4VD method is the first biclustering approach that takes the cluster stability regarding perturbations of the data into account. Application of the S4VD algorithm to a lung cancer microarray dataset revealed biclusters that correspond to coregulated genes associated with cancer subtypes. Marker genes for different lung cancer subtypes showed high selection probabilities to belong to the corresponding biclusters. Moreover, the genes associated with the biclusters belong to significantly enriched cancer-related Gene Ontology categories. In a simulation study, the S4VD algorithm outperformed the SSVD algorithm and two other SVD-related biclustering methods in recovering artificial biclusters and in being robust to noisy data.
Availability: R-Code of the S4VD algorithm as well as a documentation can be found at http://s4vd.r-forge.r-project.org/.
Contact:
m.sill@dkfz.de
Supplementary information:
Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21636597</pmid><doi>10.1093/bioinformatics/btr322</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2011-08, Vol.27 (15), p.2089-2097 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_878029011 |
source | Oxford Journals Open Access Collection |
subjects | Algorithms Biological and medical sciences Cluster Analysis Computational Biology - methods Computer Simulation Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Humans Lung Neoplasms - genetics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Oligonucleotide Array Sequence Analysis |
title | Robust biclustering by sparse singular value decomposition incorporating stability selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20biclustering%20by%20sparse%20singular%20value%20decomposition%20incorporating%20stability%20selection&rft.jtitle=Bioinformatics&rft.au=Sill,%20Martin&rft.date=2011-08-01&rft.volume=27&rft.issue=15&rft.spage=2089&rft.epage=2097&rft.pages=2089-2097&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btr322&rft_dat=%3Cproquest_TOX%3E878029011%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878029011&rft_id=info:pmid/21636597&rft_oup_id=10.1093/bioinformatics/btr322&rfr_iscdi=true |