The Stochastic Convergence of CO2 Emissions: A Long Memory Approach
In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator...
Gespeichert in:
Veröffentlicht in: | Environmental & resource economics 2011-07, Vol.49 (3), p.367-385 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 3 |
container_start_page | 367 |
container_title | Environmental & resource economics |
container_volume | 49 |
creator | Barassi, Marco R. Cole, Matthew A. Elliott, Robert J. R. |
description | In response to equity concerns surrounding the spatial distribution of CO
2
emissions and assumptions of CO
2
convergence within some climate models, this paper examines the convergence of CO
2
emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO
2
emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO
2
emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO
2
convergence and for climate policy. |
doi_str_mv | 10.1007/s10640-010-9437-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877843332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>877843332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</originalsourceid><addsrcrecordid>eNp1UMtKLDEUDKLg-PgAd8GNq_aePDpJuxsaH_cy4kJdhxhPz7TOdNqkZ2D-3gx9URBcVApCVZ2iCDljcMkA9J_EQEkogEFRSaELvUcmrNSiYCXwfTKBistCSQWH5CilNwCotFQTUj8tkD4OwS9cGlpP69BtMM6x80hDQ-sHTq9XbUpt6NIVndJZ6Ob0Hlchbum072NwfnFCDhq3THj6n4_J8831U31XzB5u_9bTWeGl1kNhBHqvJFZOSf-qqqYpvWLGeM69kWDw1chSO2E88kYjY7qpGlSoNZMvgKU4Jhdjbj77scY02NzM43LpOgzrZI3WRgoheFae_1C-hXXscrksgrJUgqksYqPIx5BSxMb2sV25uLUM7G5UO45q86h2N6rV2fNv9ETs0X8Z3l2PXcT8s7HCySo_2wwOjGVqM0RGv2OlrTClXQyrHMbHsJRzujnG75a_N_gEGJmQ3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870556316</pqid></control><display><type>article</type><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><source>RePEc</source><source>SpringerLink (Online service)</source><creator>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</creator><creatorcontrib>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</creatorcontrib><description>In response to equity concerns surrounding the spatial distribution of CO
2
emissions and assumptions of CO
2
convergence within some climate models, this paper examines the convergence of CO
2
emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO
2
emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO
2
emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO
2
convergence and for climate policy.</description><identifier>ISSN: 0924-6460</identifier><identifier>EISSN: 1573-1502</identifier><identifier>DOI: 10.1007/s10640-010-9437-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Carbon emissions ; Climate change ; Climate models ; Climate policy ; Convergence ; Cross-national analysis ; Developing countries ; Economic Policy ; Economics ; Economics and Finance ; Emissions ; Environmental Economics ; Environmental Law/Policy/Ecojustice ; Environmental Management ; Environmental policy ; Estimation ; Fractional integration ; Industrialized nations ; LDCs ; Local Whittle estimation ; Per capita ; Pollution ; Spatial distribution ; Stochastic processes ; Studies ; Time series</subject><ispartof>Environmental & resource economics, 2011-07, Vol.49 (3), p.367-385</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</citedby><cites>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10640-010-9437-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10640-010-9437-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,3994,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapenreec/v_3a49_3ay_3a2011_3ai_3a3_3ap_3a367-385.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barassi, Marco R.</creatorcontrib><creatorcontrib>Cole, Matthew A.</creatorcontrib><creatorcontrib>Elliott, Robert J. R.</creatorcontrib><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><title>Environmental & resource economics</title><addtitle>Environ Resource Econ</addtitle><description>In response to equity concerns surrounding the spatial distribution of CO
2
emissions and assumptions of CO
2
convergence within some climate models, this paper examines the convergence of CO
2
emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO
2
emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO
2
emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO
2
convergence and for climate policy.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon emissions</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate policy</subject><subject>Convergence</subject><subject>Cross-national analysis</subject><subject>Developing countries</subject><subject>Economic Policy</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Emissions</subject><subject>Environmental Economics</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Environmental Management</subject><subject>Environmental policy</subject><subject>Estimation</subject><subject>Fractional integration</subject><subject>Industrialized nations</subject><subject>LDCs</subject><subject>Local Whittle estimation</subject><subject>Per capita</subject><subject>Pollution</subject><subject>Spatial distribution</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Time series</subject><issn>0924-6460</issn><issn>1573-1502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKLDEUDKLg-PgAd8GNq_aePDpJuxsaH_cy4kJdhxhPz7TOdNqkZ2D-3gx9URBcVApCVZ2iCDljcMkA9J_EQEkogEFRSaELvUcmrNSiYCXwfTKBistCSQWH5CilNwCotFQTUj8tkD4OwS9cGlpP69BtMM6x80hDQ-sHTq9XbUpt6NIVndJZ6Ob0Hlchbum072NwfnFCDhq3THj6n4_J8831U31XzB5u_9bTWeGl1kNhBHqvJFZOSf-qqqYpvWLGeM69kWDw1chSO2E88kYjY7qpGlSoNZMvgKU4Jhdjbj77scY02NzM43LpOgzrZI3WRgoheFae_1C-hXXscrksgrJUgqksYqPIx5BSxMb2sV25uLUM7G5UO45q86h2N6rV2fNv9ETs0X8Z3l2PXcT8s7HCySo_2wwOjGVqM0RGv2OlrTClXQyrHMbHsJRzujnG75a_N_gEGJmQ3g</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Barassi, Marco R.</creator><creator>Cole, Matthew A.</creator><creator>Elliott, Robert J. R.</creator><general>Springer Netherlands</general><general>European Association of Environmental and Resource Economists</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20110701</creationdate><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><author>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon emissions</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate policy</topic><topic>Convergence</topic><topic>Cross-national analysis</topic><topic>Developing countries</topic><topic>Economic Policy</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Emissions</topic><topic>Environmental Economics</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Environmental Management</topic><topic>Environmental policy</topic><topic>Estimation</topic><topic>Fractional integration</topic><topic>Industrialized nations</topic><topic>LDCs</topic><topic>Local Whittle estimation</topic><topic>Per capita</topic><topic>Pollution</topic><topic>Spatial distribution</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barassi, Marco R.</creatorcontrib><creatorcontrib>Cole, Matthew A.</creatorcontrib><creatorcontrib>Elliott, Robert J. R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental & resource economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barassi, Marco R.</au><au>Cole, Matthew A.</au><au>Elliott, Robert J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</atitle><jtitle>Environmental & resource economics</jtitle><stitle>Environ Resource Econ</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>49</volume><issue>3</issue><spage>367</spage><epage>385</epage><pages>367-385</pages><issn>0924-6460</issn><eissn>1573-1502</eissn><abstract>In response to equity concerns surrounding the spatial distribution of CO
2
emissions and assumptions of CO
2
convergence within some climate models, this paper examines the convergence of CO
2
emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO
2
emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO
2
emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO
2
convergence and for climate policy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10640-010-9437-7</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-6460 |
ispartof | Environmental & resource economics, 2011-07, Vol.49 (3), p.367-385 |
issn | 0924-6460 1573-1502 |
language | eng |
recordid | cdi_proquest_miscellaneous_877843332 |
source | RePEc; SpringerLink (Online service) |
subjects | Carbon dioxide Carbon dioxide emissions Carbon emissions Climate change Climate models Climate policy Convergence Cross-national analysis Developing countries Economic Policy Economics Economics and Finance Emissions Environmental Economics Environmental Law/Policy/Ecojustice Environmental Management Environmental policy Estimation Fractional integration Industrialized nations LDCs Local Whittle estimation Per capita Pollution Spatial distribution Stochastic processes Studies Time series |
title | The Stochastic Convergence of CO2 Emissions: A Long Memory Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Convergence%20of%20CO2%20Emissions:%20A%20Long%20Memory%20Approach&rft.jtitle=Environmental%20&%20resource%20economics&rft.au=Barassi,%20Marco%20R.&rft.date=2011-07-01&rft.volume=49&rft.issue=3&rft.spage=367&rft.epage=385&rft.pages=367-385&rft.issn=0924-6460&rft.eissn=1573-1502&rft_id=info:doi/10.1007/s10640-010-9437-7&rft_dat=%3Cproquest_cross%3E877843332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870556316&rft_id=info:pmid/&rfr_iscdi=true |