The Stochastic Convergence of CO2 Emissions: A Long Memory Approach

In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental & resource economics 2011-07, Vol.49 (3), p.367-385
Hauptverfasser: Barassi, Marco R., Cole, Matthew A., Elliott, Robert J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue 3
container_start_page 367
container_title Environmental & resource economics
container_volume 49
creator Barassi, Marco R.
Cole, Matthew A.
Elliott, Robert J. R.
description In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO 2 emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO 2 emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO 2 convergence and for climate policy.
doi_str_mv 10.1007/s10640-010-9437-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877843332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>877843332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</originalsourceid><addsrcrecordid>eNp1UMtKLDEUDKLg-PgAd8GNq_aePDpJuxsaH_cy4kJdhxhPz7TOdNqkZ2D-3gx9URBcVApCVZ2iCDljcMkA9J_EQEkogEFRSaELvUcmrNSiYCXwfTKBistCSQWH5CilNwCotFQTUj8tkD4OwS9cGlpP69BtMM6x80hDQ-sHTq9XbUpt6NIVndJZ6Ob0Hlchbum072NwfnFCDhq3THj6n4_J8831U31XzB5u_9bTWeGl1kNhBHqvJFZOSf-qqqYpvWLGeM69kWDw1chSO2E88kYjY7qpGlSoNZMvgKU4Jhdjbj77scY02NzM43LpOgzrZI3WRgoheFae_1C-hXXscrksgrJUgqksYqPIx5BSxMb2sV25uLUM7G5UO45q86h2N6rV2fNv9ETs0X8Z3l2PXcT8s7HCySo_2wwOjGVqM0RGv2OlrTClXQyrHMbHsJRzujnG75a_N_gEGJmQ3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>870556316</pqid></control><display><type>article</type><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><source>RePEc</source><source>SpringerLink (Online service)</source><creator>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</creator><creatorcontrib>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</creatorcontrib><description>In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO 2 emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO 2 emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO 2 convergence and for climate policy.</description><identifier>ISSN: 0924-6460</identifier><identifier>EISSN: 1573-1502</identifier><identifier>DOI: 10.1007/s10640-010-9437-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Carbon dioxide ; Carbon dioxide emissions ; Carbon emissions ; Climate change ; Climate models ; Climate policy ; Convergence ; Cross-national analysis ; Developing countries ; Economic Policy ; Economics ; Economics and Finance ; Emissions ; Environmental Economics ; Environmental Law/Policy/Ecojustice ; Environmental Management ; Environmental policy ; Estimation ; Fractional integration ; Industrialized nations ; LDCs ; Local Whittle estimation ; Per capita ; Pollution ; Spatial distribution ; Stochastic processes ; Studies ; Time series</subject><ispartof>Environmental &amp; resource economics, 2011-07, Vol.49 (3), p.367-385</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Springer Science+Business Media B.V. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</citedby><cites>FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10640-010-9437-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10640-010-9437-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,3994,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/kapenreec/v_3a49_3ay_3a2011_3ai_3a3_3ap_3a367-385.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Barassi, Marco R.</creatorcontrib><creatorcontrib>Cole, Matthew A.</creatorcontrib><creatorcontrib>Elliott, Robert J. R.</creatorcontrib><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><title>Environmental &amp; resource economics</title><addtitle>Environ Resource Econ</addtitle><description>In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO 2 emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO 2 emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO 2 convergence and for climate policy.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon emissions</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate policy</subject><subject>Convergence</subject><subject>Cross-national analysis</subject><subject>Developing countries</subject><subject>Economic Policy</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Emissions</subject><subject>Environmental Economics</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Environmental Management</subject><subject>Environmental policy</subject><subject>Estimation</subject><subject>Fractional integration</subject><subject>Industrialized nations</subject><subject>LDCs</subject><subject>Local Whittle estimation</subject><subject>Per capita</subject><subject>Pollution</subject><subject>Spatial distribution</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Time series</subject><issn>0924-6460</issn><issn>1573-1502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKLDEUDKLg-PgAd8GNq_aePDpJuxsaH_cy4kJdhxhPz7TOdNqkZ2D-3gx9URBcVApCVZ2iCDljcMkA9J_EQEkogEFRSaELvUcmrNSiYCXwfTKBistCSQWH5CilNwCotFQTUj8tkD4OwS9cGlpP69BtMM6x80hDQ-sHTq9XbUpt6NIVndJZ6Ob0Hlchbum072NwfnFCDhq3THj6n4_J8831U31XzB5u_9bTWeGl1kNhBHqvJFZOSf-qqqYpvWLGeM69kWDw1chSO2E88kYjY7qpGlSoNZMvgKU4Jhdjbj77scY02NzM43LpOgzrZI3WRgoheFae_1C-hXXscrksgrJUgqksYqPIx5BSxMb2sV25uLUM7G5UO45q86h2N6rV2fNv9ETs0X8Z3l2PXcT8s7HCySo_2wwOjGVqM0RGv2OlrTClXQyrHMbHsJRzujnG75a_N_gEGJmQ3g</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Barassi, Marco R.</creator><creator>Cole, Matthew A.</creator><creator>Elliott, Robert J. R.</creator><general>Springer Netherlands</general><general>European Association of Environmental and Resource Economists</general><general>Springer Nature B.V</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20110701</creationdate><title>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</title><author>Barassi, Marco R. ; Cole, Matthew A. ; Elliott, Robert J. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-83ecc64e9a64cd69ff5c6188c22c8408ed8457a38ce2f7e117f9fe6e7714b0e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon emissions</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate policy</topic><topic>Convergence</topic><topic>Cross-national analysis</topic><topic>Developing countries</topic><topic>Economic Policy</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Emissions</topic><topic>Environmental Economics</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Environmental Management</topic><topic>Environmental policy</topic><topic>Estimation</topic><topic>Fractional integration</topic><topic>Industrialized nations</topic><topic>LDCs</topic><topic>Local Whittle estimation</topic><topic>Per capita</topic><topic>Pollution</topic><topic>Spatial distribution</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barassi, Marco R.</creatorcontrib><creatorcontrib>Cole, Matthew A.</creatorcontrib><creatorcontrib>Elliott, Robert J. R.</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental &amp; resource economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barassi, Marco R.</au><au>Cole, Matthew A.</au><au>Elliott, Robert J. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stochastic Convergence of CO2 Emissions: A Long Memory Approach</atitle><jtitle>Environmental &amp; resource economics</jtitle><stitle>Environ Resource Econ</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>49</volume><issue>3</issue><spage>367</spage><epage>385</epage><pages>367-385</pages><issn>0924-6460</issn><eissn>1573-1502</eissn><abstract>In response to equity concerns surrounding the spatial distribution of CO 2 emissions and assumptions of CO 2 convergence within some climate models, this paper examines the convergence of CO 2 emissions within the OECD over the period 1870–2004. More specifically, using the Local Whittle estimator and its variants we examine whether relative per capita CO 2 emissions are fractionally integrated, that is they are long memory processes which, although highly persistant, may revert to the mean/trend in the long run. Our results suggest that CO 2 emissions within 13 out of 18 OECD countries are indeed fractionally integrated implying that they converge over time, albeit slowly. Interestingly though, the countries whose emissions are not found to be fractionally integrated are some of the highest polluters within the OECD, at least in per capita terms. Our results have implications both for future studies of CO 2 convergence and for climate policy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10640-010-9437-7</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-6460
ispartof Environmental & resource economics, 2011-07, Vol.49 (3), p.367-385
issn 0924-6460
1573-1502
language eng
recordid cdi_proquest_miscellaneous_877843332
source RePEc; SpringerLink (Online service)
subjects Carbon dioxide
Carbon dioxide emissions
Carbon emissions
Climate change
Climate models
Climate policy
Convergence
Cross-national analysis
Developing countries
Economic Policy
Economics
Economics and Finance
Emissions
Environmental Economics
Environmental Law/Policy/Ecojustice
Environmental Management
Environmental policy
Estimation
Fractional integration
Industrialized nations
LDCs
Local Whittle estimation
Per capita
Pollution
Spatial distribution
Stochastic processes
Studies
Time series
title The Stochastic Convergence of CO2 Emissions: A Long Memory Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stochastic%20Convergence%20of%20CO2%20Emissions:%20A%20Long%20Memory%20Approach&rft.jtitle=Environmental%20&%20resource%20economics&rft.au=Barassi,%20Marco%20R.&rft.date=2011-07-01&rft.volume=49&rft.issue=3&rft.spage=367&rft.epage=385&rft.pages=367-385&rft.issn=0924-6460&rft.eissn=1573-1502&rft_id=info:doi/10.1007/s10640-010-9437-7&rft_dat=%3Cproquest_cross%3E877843332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=870556316&rft_id=info:pmid/&rfr_iscdi=true