Polyester based nerve guidance conduit design

Abstract Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV–P(L-D,L)LA–PLGA) into a tube wrapping al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-03, Vol.31 (7), p.1596-1603
Hauptverfasser: Yucel, Deniz, Kose, Gamze Torun, Hasirci, Vasif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1603
container_issue 7
container_start_page 1596
container_title Biomaterials
container_volume 31
creator Yucel, Deniz
Kose, Gamze Torun
Hasirci, Vasif
description Abstract Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV–P(L-D,L)LA–PLGA) into a tube wrapping aligned electrospun fibers (PHBV–PLGA). The polymers were chosen so that the protective tube would erode slower than the fibrous core to achieve complete healing before the tube eroded. The pattern dimensions and the porosity (58.95 (%) with a maximum pore size of 4–5 μm) demonstrated that the micropatterned film would enable the migration, alignment and survival of native cells for proper regeneration. This film had sufficiently high mechanical properties (ultimate tensile strength: 3.13 MPa, Young's Modulus: 0.08 MPa) to serve as a nerve guide. Electrospun fibers, the inner part of the tubular construct, were well aligned with a fiber diameter of ca. 1.5 μm. Fiber properties were especially influenced by polymer concentration. SEM showed that the fibers were aligned parallel to the groove axis of the micropatterned film within the tube as planned considering the nerve tissue architecture. This two component nerve conduit appears to have the right organization for testing in vitro and in vivo nerve tissue engineering studies.
doi_str_mv 10.1016/j.biomaterials.2009.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877574830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961209012253</els_id><sourcerecordid>877574830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ae2fb814d76aae6bdfb0326f56f326acb1d5f85f0bf0203ab7742420d167f0fc3</originalsourceid><addsrcrecordid>eNqNkctqFEEUhgtRzCT6CtK4cdXtqXu3C0ESjUIgAXVd1OVUqLGnO1ZNB_L2VjMDiptkdSj4L8X3E_KWQkeBqvfbzqV5Z_eYkx1LxwCGjtIOKH9GNrTXfSsHkM_JBqhg7aAoOyGnpWyhvkGwl-SEDgNnEsSGtDfz-IClZjXOFgzNhPkem9slBTt5bPw8hSXtm4Al3U6vyItYK_H18Z6Rn18-_zj_2l5dX347_3TVeqHUvrXIouupCFpZi8qF6IAzFaWK9VjvaJCxlxFcBAbcOq0FEwwCVTpC9PyMvDvk3uX591K_Z3apeBxHO-G8FNNrLbXoOTyq1Jz3SiohqvLDQenzXErGaO5y2tn8YCiYlavZmn-5mpWrodRUrtX85lizuB2Gv9YjyCq4OAiwYrlPmE3xCSvBkDL6vQlzelrPx_9i_Jim5O34C-tM23nJ0-qhpjAD5vu68DowDEAZk5z_AWDGpHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733865644</pqid></control><display><type>article</type><title>Polyester based nerve guidance conduit design</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yucel, Deniz ; Kose, Gamze Torun ; Hasirci, Vasif</creator><creatorcontrib>Yucel, Deniz ; Kose, Gamze Torun ; Hasirci, Vasif</creatorcontrib><description>Abstract Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV–P(L-D,L)LA–PLGA) into a tube wrapping aligned electrospun fibers (PHBV–PLGA). The polymers were chosen so that the protective tube would erode slower than the fibrous core to achieve complete healing before the tube eroded. The pattern dimensions and the porosity (58.95 (%) with a maximum pore size of 4–5 μm) demonstrated that the micropatterned film would enable the migration, alignment and survival of native cells for proper regeneration. This film had sufficiently high mechanical properties (ultimate tensile strength: 3.13 MPa, Young's Modulus: 0.08 MPa) to serve as a nerve guide. Electrospun fibers, the inner part of the tubular construct, were well aligned with a fiber diameter of ca. 1.5 μm. Fiber properties were especially influenced by polymer concentration. SEM showed that the fibers were aligned parallel to the groove axis of the micropatterned film within the tube as planned considering the nerve tissue architecture. This two component nerve conduit appears to have the right organization for testing in vitro and in vivo nerve tissue engineering studies.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2009.11.013</identifier><identifier>PMID: 19932504</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Conduit ; Dentistry ; Dimethylpolysiloxanes - chemistry ; Electrospun mat ; Guided Tissue Regeneration - methods ; Lactic Acid - chemistry ; Magnetic Resonance Spectroscopy ; Materials Testing ; Micropattern ; Microscopy, Electron, Scanning ; Nerve guide ; Nerve regeneration ; Nerve Regeneration - drug effects ; Polyesters - pharmacology ; Polyglycolic Acid - chemistry ; Porosity - drug effects ; Surface Properties - drug effects ; Tensile Strength - drug effects ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2010-03, Vol.31 (7), p.1596-1603</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><rights>(c) 2009 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ae2fb814d76aae6bdfb0326f56f326acb1d5f85f0bf0203ab7742420d167f0fc3</citedby><cites>FETCH-LOGICAL-c466t-ae2fb814d76aae6bdfb0326f56f326acb1d5f85f0bf0203ab7742420d167f0fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961209012253$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19932504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yucel, Deniz</creatorcontrib><creatorcontrib>Kose, Gamze Torun</creatorcontrib><creatorcontrib>Hasirci, Vasif</creatorcontrib><title>Polyester based nerve guidance conduit design</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV–P(L-D,L)LA–PLGA) into a tube wrapping aligned electrospun fibers (PHBV–PLGA). The polymers were chosen so that the protective tube would erode slower than the fibrous core to achieve complete healing before the tube eroded. The pattern dimensions and the porosity (58.95 (%) with a maximum pore size of 4–5 μm) demonstrated that the micropatterned film would enable the migration, alignment and survival of native cells for proper regeneration. This film had sufficiently high mechanical properties (ultimate tensile strength: 3.13 MPa, Young's Modulus: 0.08 MPa) to serve as a nerve guide. Electrospun fibers, the inner part of the tubular construct, were well aligned with a fiber diameter of ca. 1.5 μm. Fiber properties were especially influenced by polymer concentration. SEM showed that the fibers were aligned parallel to the groove axis of the micropatterned film within the tube as planned considering the nerve tissue architecture. This two component nerve conduit appears to have the right organization for testing in vitro and in vivo nerve tissue engineering studies.</description><subject>Advanced Basic Science</subject><subject>Conduit</subject><subject>Dentistry</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Electrospun mat</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Lactic Acid - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Materials Testing</subject><subject>Micropattern</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nerve guide</subject><subject>Nerve regeneration</subject><subject>Nerve Regeneration - drug effects</subject><subject>Polyesters - pharmacology</subject><subject>Polyglycolic Acid - chemistry</subject><subject>Porosity - drug effects</subject><subject>Surface Properties - drug effects</subject><subject>Tensile Strength - drug effects</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctqFEEUhgtRzCT6CtK4cdXtqXu3C0ESjUIgAXVd1OVUqLGnO1ZNB_L2VjMDiptkdSj4L8X3E_KWQkeBqvfbzqV5Z_eYkx1LxwCGjtIOKH9GNrTXfSsHkM_JBqhg7aAoOyGnpWyhvkGwl-SEDgNnEsSGtDfz-IClZjXOFgzNhPkem9slBTt5bPw8hSXtm4Al3U6vyItYK_H18Z6Rn18-_zj_2l5dX347_3TVeqHUvrXIouupCFpZi8qF6IAzFaWK9VjvaJCxlxFcBAbcOq0FEwwCVTpC9PyMvDvk3uX591K_Z3apeBxHO-G8FNNrLbXoOTyq1Jz3SiohqvLDQenzXErGaO5y2tn8YCiYlavZmn-5mpWrodRUrtX85lizuB2Gv9YjyCq4OAiwYrlPmE3xCSvBkDL6vQlzelrPx_9i_Jim5O34C-tM23nJ0-qhpjAD5vu68DowDEAZk5z_AWDGpHk</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Yucel, Deniz</creator><creator>Kose, Gamze Torun</creator><creator>Hasirci, Vasif</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100301</creationdate><title>Polyester based nerve guidance conduit design</title><author>Yucel, Deniz ; Kose, Gamze Torun ; Hasirci, Vasif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ae2fb814d76aae6bdfb0326f56f326acb1d5f85f0bf0203ab7742420d167f0fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Conduit</topic><topic>Dentistry</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Electrospun mat</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Lactic Acid - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Materials Testing</topic><topic>Micropattern</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nerve guide</topic><topic>Nerve regeneration</topic><topic>Nerve Regeneration - drug effects</topic><topic>Polyesters - pharmacology</topic><topic>Polyglycolic Acid - chemistry</topic><topic>Porosity - drug effects</topic><topic>Surface Properties - drug effects</topic><topic>Tensile Strength - drug effects</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yucel, Deniz</creatorcontrib><creatorcontrib>Kose, Gamze Torun</creatorcontrib><creatorcontrib>Hasirci, Vasif</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yucel, Deniz</au><au>Kose, Gamze Torun</au><au>Hasirci, Vasif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyester based nerve guidance conduit design</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>31</volume><issue>7</issue><spage>1596</spage><epage>1603</epage><pages>1596-1603</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Nerve conduits containing highly aligned architecture that mimics native tissues are essential for efficient regeneration of nerve injuries. In this study, a biodegradable nerve conduit was constructed by converting a porous micropatterned film (PHBV–P(L-D,L)LA–PLGA) into a tube wrapping aligned electrospun fibers (PHBV–PLGA). The polymers were chosen so that the protective tube would erode slower than the fibrous core to achieve complete healing before the tube eroded. The pattern dimensions and the porosity (58.95 (%) with a maximum pore size of 4–5 μm) demonstrated that the micropatterned film would enable the migration, alignment and survival of native cells for proper regeneration. This film had sufficiently high mechanical properties (ultimate tensile strength: 3.13 MPa, Young's Modulus: 0.08 MPa) to serve as a nerve guide. Electrospun fibers, the inner part of the tubular construct, were well aligned with a fiber diameter of ca. 1.5 μm. Fiber properties were especially influenced by polymer concentration. SEM showed that the fibers were aligned parallel to the groove axis of the micropatterned film within the tube as planned considering the nerve tissue architecture. This two component nerve conduit appears to have the right organization for testing in vitro and in vivo nerve tissue engineering studies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>19932504</pmid><doi>10.1016/j.biomaterials.2009.11.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2010-03, Vol.31 (7), p.1596-1603
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_877574830
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Conduit
Dentistry
Dimethylpolysiloxanes - chemistry
Electrospun mat
Guided Tissue Regeneration - methods
Lactic Acid - chemistry
Magnetic Resonance Spectroscopy
Materials Testing
Micropattern
Microscopy, Electron, Scanning
Nerve guide
Nerve regeneration
Nerve Regeneration - drug effects
Polyesters - pharmacology
Polyglycolic Acid - chemistry
Porosity - drug effects
Surface Properties - drug effects
Tensile Strength - drug effects
Tissue Scaffolds - chemistry
title Polyester based nerve guidance conduit design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyester%20based%20nerve%20guidance%20conduit%20design&rft.jtitle=Biomaterials&rft.au=Yucel,%20Deniz&rft.date=2010-03-01&rft.volume=31&rft.issue=7&rft.spage=1596&rft.epage=1603&rft.pages=1596-1603&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2009.11.013&rft_dat=%3Cproquest_cross%3E877574830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733865644&rft_id=info:pmid/19932504&rft_els_id=1_s2_0_S0142961209012253&rfr_iscdi=true