Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation

Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2010-06, Vol.31 (17), p.4731-4739
Hauptverfasser: Koch, Sabine, Flanagan, Thomas C, Sachweh, Joerg S, Tanios, Fadwa, Schnoering, Heike, Deichmann, Thorsten, Ellä, Ville, Kellomäki, Minna, Gronloh, Nina, Gries, Thomas, Tolba, René, Schmitz-Rode, Thomas, Jockenhoevel, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4739
container_issue 17
container_start_page 4731
container_title Biomaterials
container_volume 31
creator Koch, Sabine
Flanagan, Thomas C
Sachweh, Joerg S
Tanios, Fadwa
Schnoering, Heike
Deichmann, Thorsten
Ellä, Ville
Kellomäki, Minna
Gronloh, Nina
Gries, Thomas
Tolba, René
Schmitz-Rode, Thomas
Jockenhoevel, Stefan
description Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n  = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.
doi_str_mv 10.1016/j.biomaterials.2010.02.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877571941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210002978</els_id><sourcerecordid>877571941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EotvCV0ARF05Zxn9ixxyQUEsBqRIH4Gw5zqTMknUW26m0356ELQhxgZM1nt-bN3oaxp5z2HLg-uVu29G09wUT-TFvBSwNEFto-AO24a1p68ZC85BtgCtRW83FGTvPeQdLDUo8ZmcCJCjVqg37ck1dolgfpvE4-lCox7rzGfuqUM4z1hhvKSKm5efO5zCPPlW3yQ-loliVr1j5dFqkCpTWdqEpPmGPhmU1fHr_Xiw-bz9fvq9vPr77cPnmpg5K61JbMJ0RugnQalABtVba8k4Onktjh8FY6FH2rdB-0D233WB4y4WXXilowMsL9uI095Cm7zPm4vaUA46jjzjN2bXGNIZbxf9JGilVo2Wzkq9OZEhTzgkHd0i09-noOLg1f7dzf-bv1vwdCAc_xc_ubeZuj_1v6a_AF-DqBOASyx1hcjkQxoA9JQzF9RP9n8_rv8aEkSIFP37DI-bdNKe4arjLi8B9Wi9hPQQOAMKaVv4AQ_2ybg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733456351</pqid></control><display><type>article</type><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creator><creatorcontrib>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creatorcontrib><description>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n  = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.02.051</identifier><identifier>PMID: 20304484</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animal experiment ; Animals ; Artery ; Carotid Arteries - cytology ; Carotid Arteries - surgery ; Carotid Arteries - ultrastructure ; Cells, Cultured ; Collagen - metabolism ; Dentistry ; Endothelial Cells - cytology ; Female ; Fibrin ; Fibrin - chemistry ; Grafting ; Hydroxyproline - metabolism ; Immunohistochemistry ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Myocytes, Smooth Muscle - cytology ; Polyesters - chemistry ; Sheep ; Tissue Engineering</subject><ispartof>Biomaterials, 2010-06, Vol.31 (17), p.4731-4739</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</citedby><cites>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.02.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20304484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Flanagan, Thomas C</creatorcontrib><creatorcontrib>Sachweh, Joerg S</creatorcontrib><creatorcontrib>Tanios, Fadwa</creatorcontrib><creatorcontrib>Schnoering, Heike</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellä, Ville</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Gronloh, Nina</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Tolba, René</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n  = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</description><subject>Advanced Basic Science</subject><subject>Animal experiment</subject><subject>Animals</subject><subject>Artery</subject><subject>Carotid Arteries - cytology</subject><subject>Carotid Arteries - surgery</subject><subject>Carotid Arteries - ultrastructure</subject><subject>Cells, Cultured</subject><subject>Collagen - metabolism</subject><subject>Dentistry</subject><subject>Endothelial Cells - cytology</subject><subject>Female</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>Grafting</subject><subject>Hydroxyproline - metabolism</subject><subject>Immunohistochemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Polyesters - chemistry</subject><subject>Sheep</subject><subject>Tissue Engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxS0EotvCV0ARF05Zxn9ixxyQUEsBqRIH4Gw5zqTMknUW26m0356ELQhxgZM1nt-bN3oaxp5z2HLg-uVu29G09wUT-TFvBSwNEFto-AO24a1p68ZC85BtgCtRW83FGTvPeQdLDUo8ZmcCJCjVqg37ck1dolgfpvE4-lCox7rzGfuqUM4z1hhvKSKm5efO5zCPPlW3yQ-loliVr1j5dFqkCpTWdqEpPmGPhmU1fHr_Xiw-bz9fvq9vPr77cPnmpg5K61JbMJ0RugnQalABtVba8k4Onktjh8FY6FH2rdB-0D233WB4y4WXXilowMsL9uI095Cm7zPm4vaUA46jjzjN2bXGNIZbxf9JGilVo2Wzkq9OZEhTzgkHd0i09-noOLg1f7dzf-bv1vwdCAc_xc_ubeZuj_1v6a_AF-DqBOASyx1hcjkQxoA9JQzF9RP9n8_rv8aEkSIFP37DI-bdNKe4arjLi8B9Wi9hPQQOAMKaVv4AQ_2ybg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Koch, Sabine</creator><creator>Flanagan, Thomas C</creator><creator>Sachweh, Joerg S</creator><creator>Tanios, Fadwa</creator><creator>Schnoering, Heike</creator><creator>Deichmann, Thorsten</creator><creator>Ellä, Ville</creator><creator>Kellomäki, Minna</creator><creator>Gronloh, Nina</creator><creator>Gries, Thomas</creator><creator>Tolba, René</creator><creator>Schmitz-Rode, Thomas</creator><creator>Jockenhoevel, Stefan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><author>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Animal experiment</topic><topic>Animals</topic><topic>Artery</topic><topic>Carotid Arteries - cytology</topic><topic>Carotid Arteries - surgery</topic><topic>Carotid Arteries - ultrastructure</topic><topic>Cells, Cultured</topic><topic>Collagen - metabolism</topic><topic>Dentistry</topic><topic>Endothelial Cells - cytology</topic><topic>Female</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>Grafting</topic><topic>Hydroxyproline - metabolism</topic><topic>Immunohistochemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Polyesters - chemistry</topic><topic>Sheep</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Flanagan, Thomas C</creatorcontrib><creatorcontrib>Sachweh, Joerg S</creatorcontrib><creatorcontrib>Tanios, Fadwa</creatorcontrib><creatorcontrib>Schnoering, Heike</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellä, Ville</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Gronloh, Nina</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Tolba, René</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Sabine</au><au>Flanagan, Thomas C</au><au>Sachweh, Joerg S</au><au>Tanios, Fadwa</au><au>Schnoering, Heike</au><au>Deichmann, Thorsten</au><au>Ellä, Ville</au><au>Kellomäki, Minna</au><au>Gronloh, Nina</au><au>Gries, Thomas</au><au>Tolba, René</au><au>Schmitz-Rode, Thomas</au><au>Jockenhoevel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>31</volume><issue>17</issue><spage>4731</spage><epage>4739</epage><pages>4731-4739</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n  = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20304484</pmid><doi>10.1016/j.biomaterials.2010.02.051</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2010-06, Vol.31 (17), p.4731-4739
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_877571941
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Advanced Basic Science
Animal experiment
Animals
Artery
Carotid Arteries - cytology
Carotid Arteries - surgery
Carotid Arteries - ultrastructure
Cells, Cultured
Collagen - metabolism
Dentistry
Endothelial Cells - cytology
Female
Fibrin
Fibrin - chemistry
Grafting
Hydroxyproline - metabolism
Immunohistochemistry
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Myocytes, Smooth Muscle - cytology
Polyesters - chemistry
Sheep
Tissue Engineering
title Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrin-polylactide-based%20tissue-engineered%20vascular%20graft%20in%20the%20arterial%20circulation&rft.jtitle=Biomaterials&rft.au=Koch,%20Sabine&rft.date=2010-06-01&rft.volume=31&rft.issue=17&rft.spage=4731&rft.epage=4739&rft.pages=4731-4739&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.02.051&rft_dat=%3Cproquest_cross%3E877571941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733456351&rft_id=info:pmid/20304484&rft_els_id=S0142961210002978&rfr_iscdi=true