Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation
Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 ...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2010-06, Vol.31 (17), p.4731-4739 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4739 |
---|---|
container_issue | 17 |
container_start_page | 4731 |
container_title | Biomaterials |
container_volume | 31 |
creator | Koch, Sabine Flanagan, Thomas C Sachweh, Joerg S Tanios, Fadwa Schnoering, Heike Deichmann, Thorsten Ellä, Ville Kellomäki, Minna Gronloh, Nina Gries, Thomas Tolba, René Schmitz-Rode, Thomas Jockenhoevel, Stefan |
description | Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings. |
doi_str_mv | 10.1016/j.biomaterials.2010.02.051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877571941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961210002978</els_id><sourcerecordid>877571941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EotvCV0ARF05Zxn9ixxyQUEsBqRIH4Gw5zqTMknUW26m0356ELQhxgZM1nt-bN3oaxp5z2HLg-uVu29G09wUT-TFvBSwNEFto-AO24a1p68ZC85BtgCtRW83FGTvPeQdLDUo8ZmcCJCjVqg37ck1dolgfpvE4-lCox7rzGfuqUM4z1hhvKSKm5efO5zCPPlW3yQ-loliVr1j5dFqkCpTWdqEpPmGPhmU1fHr_Xiw-bz9fvq9vPr77cPnmpg5K61JbMJ0RugnQalABtVba8k4Onktjh8FY6FH2rdB-0D233WB4y4WXXilowMsL9uI095Cm7zPm4vaUA46jjzjN2bXGNIZbxf9JGilVo2Wzkq9OZEhTzgkHd0i09-noOLg1f7dzf-bv1vwdCAc_xc_ubeZuj_1v6a_AF-DqBOASyx1hcjkQxoA9JQzF9RP9n8_rv8aEkSIFP37DI-bdNKe4arjLi8B9Wi9hPQQOAMKaVv4AQ_2ybg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733456351</pqid></control><display><type>article</type><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creator><creatorcontrib>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creatorcontrib><description>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2010.02.051</identifier><identifier>PMID: 20304484</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animal experiment ; Animals ; Artery ; Carotid Arteries - cytology ; Carotid Arteries - surgery ; Carotid Arteries - ultrastructure ; Cells, Cultured ; Collagen - metabolism ; Dentistry ; Endothelial Cells - cytology ; Female ; Fibrin ; Fibrin - chemistry ; Grafting ; Hydroxyproline - metabolism ; Immunohistochemistry ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Myocytes, Smooth Muscle - cytology ; Polyesters - chemistry ; Sheep ; Tissue Engineering</subject><ispartof>Biomaterials, 2010-06, Vol.31 (17), p.4731-4739</ispartof><rights>Elsevier Ltd</rights><rights>2010 Elsevier Ltd</rights><rights>Copyright 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</citedby><cites>FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2010.02.051$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20304484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Flanagan, Thomas C</creatorcontrib><creatorcontrib>Sachweh, Joerg S</creatorcontrib><creatorcontrib>Tanios, Fadwa</creatorcontrib><creatorcontrib>Schnoering, Heike</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellä, Ville</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Gronloh, Nina</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Tolba, René</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</description><subject>Advanced Basic Science</subject><subject>Animal experiment</subject><subject>Animals</subject><subject>Artery</subject><subject>Carotid Arteries - cytology</subject><subject>Carotid Arteries - surgery</subject><subject>Carotid Arteries - ultrastructure</subject><subject>Cells, Cultured</subject><subject>Collagen - metabolism</subject><subject>Dentistry</subject><subject>Endothelial Cells - cytology</subject><subject>Female</subject><subject>Fibrin</subject><subject>Fibrin - chemistry</subject><subject>Grafting</subject><subject>Hydroxyproline - metabolism</subject><subject>Immunohistochemistry</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Polyesters - chemistry</subject><subject>Sheep</subject><subject>Tissue Engineering</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxS0EotvCV0ARF05Zxn9ixxyQUEsBqRIH4Gw5zqTMknUW26m0356ELQhxgZM1nt-bN3oaxp5z2HLg-uVu29G09wUT-TFvBSwNEFto-AO24a1p68ZC85BtgCtRW83FGTvPeQdLDUo8ZmcCJCjVqg37ck1dolgfpvE4-lCox7rzGfuqUM4z1hhvKSKm5efO5zCPPlW3yQ-loliVr1j5dFqkCpTWdqEpPmGPhmU1fHr_Xiw-bz9fvq9vPr77cPnmpg5K61JbMJ0RugnQalABtVba8k4Onktjh8FY6FH2rdB-0D233WB4y4WXXilowMsL9uI095Cm7zPm4vaUA46jjzjN2bXGNIZbxf9JGilVo2Wzkq9OZEhTzgkHd0i09-noOLg1f7dzf-bv1vwdCAc_xc_ubeZuj_1v6a_AF-DqBOASyx1hcjkQxoA9JQzF9RP9n8_rv8aEkSIFP37DI-bdNKe4arjLi8B9Wi9hPQQOAMKaVv4AQ_2ybg</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Koch, Sabine</creator><creator>Flanagan, Thomas C</creator><creator>Sachweh, Joerg S</creator><creator>Tanios, Fadwa</creator><creator>Schnoering, Heike</creator><creator>Deichmann, Thorsten</creator><creator>Ellä, Ville</creator><creator>Kellomäki, Minna</creator><creator>Gronloh, Nina</creator><creator>Gries, Thomas</creator><creator>Tolba, René</creator><creator>Schmitz-Rode, Thomas</creator><creator>Jockenhoevel, Stefan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100601</creationdate><title>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</title><author>Koch, Sabine ; Flanagan, Thomas C ; Sachweh, Joerg S ; Tanios, Fadwa ; Schnoering, Heike ; Deichmann, Thorsten ; Ellä, Ville ; Kellomäki, Minna ; Gronloh, Nina ; Gries, Thomas ; Tolba, René ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-907b7265c08604ce664691b3fa1379ff790de3d826af6d19bf71812a3a44050a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Advanced Basic Science</topic><topic>Animal experiment</topic><topic>Animals</topic><topic>Artery</topic><topic>Carotid Arteries - cytology</topic><topic>Carotid Arteries - surgery</topic><topic>Carotid Arteries - ultrastructure</topic><topic>Cells, Cultured</topic><topic>Collagen - metabolism</topic><topic>Dentistry</topic><topic>Endothelial Cells - cytology</topic><topic>Female</topic><topic>Fibrin</topic><topic>Fibrin - chemistry</topic><topic>Grafting</topic><topic>Hydroxyproline - metabolism</topic><topic>Immunohistochemistry</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Polyesters - chemistry</topic><topic>Sheep</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Flanagan, Thomas C</creatorcontrib><creatorcontrib>Sachweh, Joerg S</creatorcontrib><creatorcontrib>Tanios, Fadwa</creatorcontrib><creatorcontrib>Schnoering, Heike</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellä, Ville</creatorcontrib><creatorcontrib>Kellomäki, Minna</creatorcontrib><creatorcontrib>Gronloh, Nina</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Tolba, René</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Sabine</au><au>Flanagan, Thomas C</au><au>Sachweh, Joerg S</au><au>Tanios, Fadwa</au><au>Schnoering, Heike</au><au>Deichmann, Thorsten</au><au>Ellä, Ville</au><au>Kellomäki, Minna</au><au>Gronloh, Nina</au><au>Gries, Thomas</au><au>Tolba, René</au><au>Schmitz-Rode, Thomas</au><au>Jockenhoevel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>31</volume><issue>17</issue><spage>4731</spage><epage>4739</epage><pages>4731-4739</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract There is a clear clinical requirement for the design and development of living, functional, small-calibre arterial grafts. Here, we investigate the potential use of a small diameter, tissue-engineered artery in a pre-clinical study in the carotid artery position of sheep. Small-calibre (∼5 mm) vascular composite grafts were molded using a fibrin scaffold supported by a poly(L/D)lactide 96/4 (P(L/D)LA 96/4) mesh, and seeded with autologous arterial-derived cells prior to 28 days of dynamic conditioning. Conditioned grafts were subsequently implanted for up to 6 months as interposed carotid artery grafts in the same animals from which the cells were harvested. Explanted grafts ( n = 6) were patent in each of the study groups (1 month, 3 months, 6 months), with a significant stenosis in one explant (3 months). There was a complete absence of thrombus formation on the luminal surface of grafts, with no evidence for aneurysm formation or calcification after 6 months in vivo . Histological analyses revealed remodeling of the fibrin scaffold with mature autologous proteins, and excellent cell distribution within the graft wall. Positive vWf and eNOS staining, in addition to scanning electron microscopy, revealed a confluent monolayer of endothelial cells lining the luminal surface of the grafts. The present study demonstrates the successful production and mid-term application of an autologous, fibrin-based small-calibre vascular graft in the arterial circulation, and highlights the potential for the creation of autologous implantable arterial grafts in a number of settings.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20304484</pmid><doi>10.1016/j.biomaterials.2010.02.051</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2010-06, Vol.31 (17), p.4731-4739 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_877571941 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Advanced Basic Science Animal experiment Animals Artery Carotid Arteries - cytology Carotid Arteries - surgery Carotid Arteries - ultrastructure Cells, Cultured Collagen - metabolism Dentistry Endothelial Cells - cytology Female Fibrin Fibrin - chemistry Grafting Hydroxyproline - metabolism Immunohistochemistry Microscopy, Electron, Scanning Microscopy, Electron, Transmission Myocytes, Smooth Muscle - cytology Polyesters - chemistry Sheep Tissue Engineering |
title | Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrin-polylactide-based%20tissue-engineered%20vascular%20graft%20in%20the%20arterial%20circulation&rft.jtitle=Biomaterials&rft.au=Koch,%20Sabine&rft.date=2010-06-01&rft.volume=31&rft.issue=17&rft.spage=4731&rft.epage=4739&rft.pages=4731-4739&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2010.02.051&rft_dat=%3Cproquest_cross%3E877571941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733456351&rft_id=info:pmid/20304484&rft_els_id=S0142961210002978&rfr_iscdi=true |