The design of well-defined PDMS–Magnetite complexes
Magnetic nanoparticles have numerous applications, particularly in biological systems for drug delivery, cell targeting, and as MRI contrast agents. This paper addresses the synthesis and characterization of well-defined magnetite nanoparticles coated with tricarboxylate-functional polydimethylsilox...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2010-01, Vol.51 (2), p.482-491 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 491 |
---|---|
container_issue | 2 |
container_start_page | 482 |
container_title | Polymer (Guilford) |
container_volume | 51 |
creator | Miles, W.C. Goff, J.D. Huffstetler, P.P. Mefford, O.T. Riffle, J.S. Davis, R.M. |
description | Magnetic nanoparticles have numerous applications, particularly in biological systems for drug delivery, cell targeting, and as MRI contrast agents. This paper addresses the synthesis and characterization of well-defined magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers of varying molecular weight. Two methods – co-precipitation of iron chlorides and high-temperature reduction of iron(III) acetylacetonate – were used to synthesize the magnetite nanoparticles and compared. Through implementation of a polymer brush model, it was determined that the co-precipitation synthesis method required multiple magnetic separations and significant material loss to produce a well-defined particle distribution. Conversely, the high-temperature synthesis method showed a well-defined particle distribution without any magnetic separation. Through adjustment of critical design parameters such as polymer loading and molecular weight, the diameters of the complexes were predicted to within seven percent of experimental values. This demonstrates a tool for the design of sterically-stabilized single–particle complexes with a specifically tailored particle size.
[Display omitted] |
doi_str_mv | 10.1016/j.polymer.2009.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_877570991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386109010027</els_id><sourcerecordid>877570991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-1e3bf0a967b5fcf40f929dd8cf47f23cdd4f6c658724e5b26404cee6655e8eb03</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBKRsEKsE27GdZIVQ-ZVagURZW4k9Lq7yh50C3XEHbshJcNWKLauZxffem3kInRKcEEzExTLpu3rdgEsoxkVCSIIp3UMjkmdpTGlB9tEI45TGaS7IITryfokxppyyEeLzV4g0eLtoo85EH1DXsQZjW9DR0_Xs-efre1YuWhjsAJHqmr6GT_DH6MCUtYeT3Ryjl9ub-eQ-nj7ePUyuprFKMzLEBNLK4LIQWcWNMgybghZa52HNDE2V1swIJXieUQa8ooJhpgCE4BxyqHA6Rudb3951byvwg2ysV-HGsoVu5WWeZTzDRUECybekcp33DozsnW1Kt5YEy01Lcil3LclNS5IQGVoKurNdQulVWRtXtsr6P3EgBOWMBe5yy0F4990GF68stAq0daAGqTv7T9IvUDWAqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877570991</pqid></control><display><type>article</type><title>The design of well-defined PDMS–Magnetite complexes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Miles, W.C. ; Goff, J.D. ; Huffstetler, P.P. ; Mefford, O.T. ; Riffle, J.S. ; Davis, R.M.</creator><creatorcontrib>Miles, W.C. ; Goff, J.D. ; Huffstetler, P.P. ; Mefford, O.T. ; Riffle, J.S. ; Davis, R.M.</creatorcontrib><description>Magnetic nanoparticles have numerous applications, particularly in biological systems for drug delivery, cell targeting, and as MRI contrast agents. This paper addresses the synthesis and characterization of well-defined magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers of varying molecular weight. Two methods – co-precipitation of iron chlorides and high-temperature reduction of iron(III) acetylacetonate – were used to synthesize the magnetite nanoparticles and compared. Through implementation of a polymer brush model, it was determined that the co-precipitation synthesis method required multiple magnetic separations and significant material loss to produce a well-defined particle distribution. Conversely, the high-temperature synthesis method showed a well-defined particle distribution without any magnetic separation. Through adjustment of critical design parameters such as polymer loading and molecular weight, the diameters of the complexes were predicted to within seven percent of experimental values. This demonstrates a tool for the design of sterically-stabilized single–particle complexes with a specifically tailored particle size.
[Display omitted]</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2009.11.022</identifier><identifier>CODEN: POLMAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Magnetite ; Particle size distribution ; Polydimethylsiloxane brush ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymer (Guilford), 2010-01, Vol.51 (2), p.482-491</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-1e3bf0a967b5fcf40f929dd8cf47f23cdd4f6c658724e5b26404cee6655e8eb03</citedby><cites>FETCH-LOGICAL-c371t-1e3bf0a967b5fcf40f929dd8cf47f23cdd4f6c658724e5b26404cee6655e8eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032386109010027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22362544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Miles, W.C.</creatorcontrib><creatorcontrib>Goff, J.D.</creatorcontrib><creatorcontrib>Huffstetler, P.P.</creatorcontrib><creatorcontrib>Mefford, O.T.</creatorcontrib><creatorcontrib>Riffle, J.S.</creatorcontrib><creatorcontrib>Davis, R.M.</creatorcontrib><title>The design of well-defined PDMS–Magnetite complexes</title><title>Polymer (Guilford)</title><description>Magnetic nanoparticles have numerous applications, particularly in biological systems for drug delivery, cell targeting, and as MRI contrast agents. This paper addresses the synthesis and characterization of well-defined magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers of varying molecular weight. Two methods – co-precipitation of iron chlorides and high-temperature reduction of iron(III) acetylacetonate – were used to synthesize the magnetite nanoparticles and compared. Through implementation of a polymer brush model, it was determined that the co-precipitation synthesis method required multiple magnetic separations and significant material loss to produce a well-defined particle distribution. Conversely, the high-temperature synthesis method showed a well-defined particle distribution without any magnetic separation. Through adjustment of critical design parameters such as polymer loading and molecular weight, the diameters of the complexes were predicted to within seven percent of experimental values. This demonstrates a tool for the design of sterically-stabilized single–particle complexes with a specifically tailored particle size.
[Display omitted]</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Magnetite</subject><subject>Particle size distribution</subject><subject>Polydimethylsiloxane brush</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBKRsEKsE27GdZIVQ-ZVagURZW4k9Lq7yh50C3XEHbshJcNWKLauZxffem3kInRKcEEzExTLpu3rdgEsoxkVCSIIp3UMjkmdpTGlB9tEI45TGaS7IITryfokxppyyEeLzV4g0eLtoo85EH1DXsQZjW9DR0_Xs-efre1YuWhjsAJHqmr6GT_DH6MCUtYeT3Ryjl9ub-eQ-nj7ePUyuprFKMzLEBNLK4LIQWcWNMgybghZa52HNDE2V1swIJXieUQa8ooJhpgCE4BxyqHA6Rudb3951byvwg2ysV-HGsoVu5WWeZTzDRUECybekcp33DozsnW1Kt5YEy01Lcil3LclNS5IQGVoKurNdQulVWRtXtsr6P3EgBOWMBe5yy0F4990GF68stAq0daAGqTv7T9IvUDWAqw</recordid><startdate>20100121</startdate><enddate>20100121</enddate><creator>Miles, W.C.</creator><creator>Goff, J.D.</creator><creator>Huffstetler, P.P.</creator><creator>Mefford, O.T.</creator><creator>Riffle, J.S.</creator><creator>Davis, R.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100121</creationdate><title>The design of well-defined PDMS–Magnetite complexes</title><author>Miles, W.C. ; Goff, J.D. ; Huffstetler, P.P. ; Mefford, O.T. ; Riffle, J.S. ; Davis, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-1e3bf0a967b5fcf40f929dd8cf47f23cdd4f6c658724e5b26404cee6655e8eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Magnetite</topic><topic>Particle size distribution</topic><topic>Polydimethylsiloxane brush</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miles, W.C.</creatorcontrib><creatorcontrib>Goff, J.D.</creatorcontrib><creatorcontrib>Huffstetler, P.P.</creatorcontrib><creatorcontrib>Mefford, O.T.</creatorcontrib><creatorcontrib>Riffle, J.S.</creatorcontrib><creatorcontrib>Davis, R.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miles, W.C.</au><au>Goff, J.D.</au><au>Huffstetler, P.P.</au><au>Mefford, O.T.</au><au>Riffle, J.S.</au><au>Davis, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The design of well-defined PDMS–Magnetite complexes</atitle><jtitle>Polymer (Guilford)</jtitle><date>2010-01-21</date><risdate>2010</risdate><volume>51</volume><issue>2</issue><spage>482</spage><epage>491</epage><pages>482-491</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><coden>POLMAG</coden><abstract>Magnetic nanoparticles have numerous applications, particularly in biological systems for drug delivery, cell targeting, and as MRI contrast agents. This paper addresses the synthesis and characterization of well-defined magnetite nanoparticles coated with tricarboxylate-functional polydimethylsiloxane (PDMS) oligomers of varying molecular weight. Two methods – co-precipitation of iron chlorides and high-temperature reduction of iron(III) acetylacetonate – were used to synthesize the magnetite nanoparticles and compared. Through implementation of a polymer brush model, it was determined that the co-precipitation synthesis method required multiple magnetic separations and significant material loss to produce a well-defined particle distribution. Conversely, the high-temperature synthesis method showed a well-defined particle distribution without any magnetic separation. Through adjustment of critical design parameters such as polymer loading and molecular weight, the diameters of the complexes were predicted to within seven percent of experimental values. This demonstrates a tool for the design of sterically-stabilized single–particle complexes with a specifically tailored particle size.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2009.11.022</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2010-01, Vol.51 (2), p.482-491 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_proquest_miscellaneous_877570991 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Composites Exact sciences and technology Forms of application and semi-finished materials Magnetite Particle size distribution Polydimethylsiloxane brush Polymer industry, paints, wood Technology of polymers |
title | The design of well-defined PDMS–Magnetite complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20design%20of%20well-defined%20PDMS%E2%80%93Magnetite%20complexes&rft.jtitle=Polymer%20(Guilford)&rft.au=Miles,%20W.C.&rft.date=2010-01-21&rft.volume=51&rft.issue=2&rft.spage=482&rft.epage=491&rft.pages=482-491&rft.issn=0032-3861&rft.eissn=1873-2291&rft.coden=POLMAG&rft_id=info:doi/10.1016/j.polymer.2009.11.022&rft_dat=%3Cproquest_cross%3E877570991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877570991&rft_id=info:pmid/&rft_els_id=S0032386109010027&rfr_iscdi=true |