In vivo evidence of disseminated subpial T2 signal changes in multiple sclerosis at 7 T: a surface-based analysis
Cortical subpial demyelination is frequent in multiple sclerosis (MS) and is closely associated with disease progression and poor neurological outcome. Although cortical lesions have been difficult to detect using conventional MRI, preliminary data using T2*-weighted imaging at ultra-high field 7T M...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2011-07, Vol.57 (1), p.55-62 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cortical subpial demyelination is frequent in multiple sclerosis (MS) and is closely associated with disease progression and poor neurological outcome. Although cortical lesions have been difficult to detect using conventional MRI, preliminary data using T2*-weighted imaging at ultra-high field 7T MRI showed improved sensitivity for detecting and categorizing different histological types of cortical MS lesions. In this study we combined high-resolution 7T MRI with a surface-based analysis technique to quantify and map subpial T2*-weighted signal changes in seventeen patients with MS. We applied a robust method to register 7T data with the reconstructed cortical surface of each individual and used a general linear model to assess in vivo an increase in subpial T2*-weighted signal in patients versus age-matched controls, and to investigate the spatial distribution of cortical subpial changes across the cortical ribbon. We also assessed the relationship between subpial T2* signal changes at 7T, Expanded Disability Status Scale (EDSS) score and white matter lesion load (WMLL). Patients with MS showed significant T2*-weighted signal increase in the frontal lobes (parsopercularis, precentral gyrus, middle and superior frontal gyrus, orbitofrontal cortex), anterior cingulate, temporal (superior, middle and inferior temporal gyri), and parietal cortices (superior and inferior parietal cortex, precuneus), but also in occipital regions of the left hemisphere. We found significant correlations between subpial T2*-weighted signal and EDSS score in the precentral gyrus (ρ=0.56, P=0.02) and between T2*-weighted signal and WMLL in the lateral orbitofrontal, superior parietal, cuneus, precentral and superior frontal regions. Our data support the presence of disseminated subpial increases in T2* signal in subjects with MS, which may reflect the diffuse subpial pathology described in neuropathology. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2011.04.009 |