Magneto-thermal convection in solar prominences

Plasma bubbles in the solar corona Recent observations of solar prominences with the optical telescope aboard the Hinode satellite have revealed dark, low-density bubbles that undergo Rayleigh–Taylor instabilities and evolve into dark plumes within coronal cavities — large, low-density regions forme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2011-04, Vol.472 (7342), p.197-200
Hauptverfasser: Berger, Thomas, Testa, Paola, Hillier, Andrew, Boerner, Paul, Low, Boon Chye, Shibata, Kazunari, Schrijver, Carolus, Tarbell, Ted, Title, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 7342
container_start_page 197
container_title Nature (London)
container_volume 472
creator Berger, Thomas
Testa, Paola
Hillier, Andrew
Boerner, Paul
Low, Boon Chye
Shibata, Kazunari
Schrijver, Carolus
Tarbell, Ted
Title, Alan
description Plasma bubbles in the solar corona Recent observations of solar prominences with the optical telescope aboard the Hinode satellite have revealed dark, low-density bubbles that undergo Rayleigh–Taylor instabilities and evolve into dark plumes within coronal cavities — large, low-density regions formed by hemispheric-scale magnetic flux ropes in the outer solar atmosphere. New optical and extreme-ultraviolet data from Hinode and the recently launched NASA Solar Dynamics Observatory show that these prominence cavity structures are heated to temperatures of at least 250,000 K and perhaps as high as 10 6 K, which is 25–100 times hotter than the overlying prominence. These findings identify a source of buoyancy for these plasma bubbles and point to a previously unrecognized form of magneto-thermal convection in the outer solar atmosphere. Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun’s outer atmosphere 1 . They evolve over time, eventually erupting as the dark cores of coronal mass ejections 2 , 3 . Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations 4 of high-latitude ‘polar crown’ prominences within coronal cavities reveal dark, low-density 5 ‘bubbles’ that undergo Rayleigh–Taylor instabilities 6 , 7 to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5–12) × 10 5 kelvin, which is 25–120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity–prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.
doi_str_mv 10.1038/nature09925
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_876236180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A254484716</galeid><sourcerecordid>A254484716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c715t-8755f3344389d2cd82afc7f61d84b4dbb754b9badafdf30fd169f02bdcce9d953</originalsourceid><addsrcrecordid>eNqF0s9vFCEUB3BiNHatnrybTY1Ro9MCwwBz3Gz80aRqojUeCQOPdZoZ2MKMaf972exqu2bUcCCBD98X4CH0mOBjgkt54vUwRsB1Tas7aEaY4AXjUtxFM4ypLLAs-QF6kNIFxrgigt1HB5SwGnNez9DJB73yMIRi-A6x193cBP8DzNAGP2_9PIVOx_k6hr714A2kh-ie012CR7v5EH19--Z8-b44-_TudLk4K4wg1VBIUVWuLBkrZW2psZJqZ4TjxErWMNs0omJN3WirnXUldpbw2mHaWGOgtnVVHqLn29xc-3KENKi-TQa6TnsIY1JScFpyIvH_JadUYsk3mS_-KYmoyopiQUmmR3_QizBGn2-c80rORX7ajJ5u0Up3oFrvwhC12WSqBa0Yk0wQnlUxoVbgIeoueHBtXt7zRxPerNtLdRsdT6A8LPStmUx9uXcgmwGuhpUeU1KnXz7v21d_t4vzb8uPk9rEkFIEp9ax7XW8VgSrTYOqWw2a9ZPdw45ND_a3_dWRGTzbAZ2M7lzU3rTpxjFMRS1Zdq-3LuUtv4J480NTdX8C54X3Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863667002</pqid></control><display><type>article</type><title>Magneto-thermal convection in solar prominences</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Berger, Thomas ; Testa, Paola ; Hillier, Andrew ; Boerner, Paul ; Low, Boon Chye ; Shibata, Kazunari ; Schrijver, Carolus ; Tarbell, Ted ; Title, Alan</creator><creatorcontrib>Berger, Thomas ; Testa, Paola ; Hillier, Andrew ; Boerner, Paul ; Low, Boon Chye ; Shibata, Kazunari ; Schrijver, Carolus ; Tarbell, Ted ; Title, Alan</creatorcontrib><description>Plasma bubbles in the solar corona Recent observations of solar prominences with the optical telescope aboard the Hinode satellite have revealed dark, low-density bubbles that undergo Rayleigh–Taylor instabilities and evolve into dark plumes within coronal cavities — large, low-density regions formed by hemispheric-scale magnetic flux ropes in the outer solar atmosphere. New optical and extreme-ultraviolet data from Hinode and the recently launched NASA Solar Dynamics Observatory show that these prominence cavity structures are heated to temperatures of at least 250,000 K and perhaps as high as 10 6 K, which is 25–100 times hotter than the overlying prominence. These findings identify a source of buoyancy for these plasma bubbles and point to a previously unrecognized form of magneto-thermal convection in the outer solar atmosphere. Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun’s outer atmosphere 1 . They evolve over time, eventually erupting as the dark cores of coronal mass ejections 2 , 3 . Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations 4 of high-latitude ‘polar crown’ prominences within coronal cavities reveal dark, low-density 5 ‘bubbles’ that undergo Rayleigh–Taylor instabilities 6 , 7 to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5–12) × 10 5 kelvin, which is 25–120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity–prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature09925</identifier><identifier>PMID: 21490669</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/33/525/870 ; Astronomy ; Atmosphere ; Bubbles ; Buoyancy ; Convection ; Coronal mass ejection ; Earth, ocean, space ; Electric properties ; Evolution ; Exact sciences and technology ; Holes ; Humanities and Social Sciences ; letter ; Magnetic fields ; Magnetooptics ; multidisciplinary ; Plasma ; Plumes ; Prominences ; Ratios ; Science ; Science (multidisciplinary) ; Solar physics ; Solar system ; Sun ; Temperature</subject><ispartof>Nature (London), 2011-04, Vol.472 (7342), p.197-200</ispartof><rights>Springer Nature Limited 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2011 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 14, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c715t-8755f3344389d2cd82afc7f61d84b4dbb754b9badafdf30fd169f02bdcce9d953</citedby><cites>FETCH-LOGICAL-c715t-8755f3344389d2cd82afc7f61d84b4dbb754b9badafdf30fd169f02bdcce9d953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature09925$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature09925$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24027984$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21490669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Testa, Paola</creatorcontrib><creatorcontrib>Hillier, Andrew</creatorcontrib><creatorcontrib>Boerner, Paul</creatorcontrib><creatorcontrib>Low, Boon Chye</creatorcontrib><creatorcontrib>Shibata, Kazunari</creatorcontrib><creatorcontrib>Schrijver, Carolus</creatorcontrib><creatorcontrib>Tarbell, Ted</creatorcontrib><creatorcontrib>Title, Alan</creatorcontrib><title>Magneto-thermal convection in solar prominences</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Plasma bubbles in the solar corona Recent observations of solar prominences with the optical telescope aboard the Hinode satellite have revealed dark, low-density bubbles that undergo Rayleigh–Taylor instabilities and evolve into dark plumes within coronal cavities — large, low-density regions formed by hemispheric-scale magnetic flux ropes in the outer solar atmosphere. New optical and extreme-ultraviolet data from Hinode and the recently launched NASA Solar Dynamics Observatory show that these prominence cavity structures are heated to temperatures of at least 250,000 K and perhaps as high as 10 6 K, which is 25–100 times hotter than the overlying prominence. These findings identify a source of buoyancy for these plasma bubbles and point to a previously unrecognized form of magneto-thermal convection in the outer solar atmosphere. Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun’s outer atmosphere 1 . They evolve over time, eventually erupting as the dark cores of coronal mass ejections 2 , 3 . Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations 4 of high-latitude ‘polar crown’ prominences within coronal cavities reveal dark, low-density 5 ‘bubbles’ that undergo Rayleigh–Taylor instabilities 6 , 7 to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5–12) × 10 5 kelvin, which is 25–120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity–prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.</description><subject>639/33/525/870</subject><subject>Astronomy</subject><subject>Atmosphere</subject><subject>Bubbles</subject><subject>Buoyancy</subject><subject>Convection</subject><subject>Coronal mass ejection</subject><subject>Earth, ocean, space</subject><subject>Electric properties</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Holes</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Magnetic fields</subject><subject>Magnetooptics</subject><subject>multidisciplinary</subject><subject>Plasma</subject><subject>Plumes</subject><subject>Prominences</subject><subject>Ratios</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solar physics</subject><subject>Solar system</subject><subject>Sun</subject><subject>Temperature</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s9vFCEUB3BiNHatnrybTY1Ro9MCwwBz3Gz80aRqojUeCQOPdZoZ2MKMaf972exqu2bUcCCBD98X4CH0mOBjgkt54vUwRsB1Tas7aEaY4AXjUtxFM4ypLLAs-QF6kNIFxrgigt1HB5SwGnNez9DJB73yMIRi-A6x193cBP8DzNAGP2_9PIVOx_k6hr714A2kh-ie012CR7v5EH19--Z8-b44-_TudLk4K4wg1VBIUVWuLBkrZW2psZJqZ4TjxErWMNs0omJN3WirnXUldpbw2mHaWGOgtnVVHqLn29xc-3KENKi-TQa6TnsIY1JScFpyIvH_JadUYsk3mS_-KYmoyopiQUmmR3_QizBGn2-c80rORX7ajJ5u0Up3oFrvwhC12WSqBa0Yk0wQnlUxoVbgIeoueHBtXt7zRxPerNtLdRsdT6A8LPStmUx9uXcgmwGuhpUeU1KnXz7v21d_t4vzb8uPk9rEkFIEp9ax7XW8VgSrTYOqWw2a9ZPdw45ND_a3_dWRGTzbAZ2M7lzU3rTpxjFMRS1Zdq-3LuUtv4J480NTdX8C54X3Tw</recordid><startdate>20110414</startdate><enddate>20110414</enddate><creator>Berger, Thomas</creator><creator>Testa, Paola</creator><creator>Hillier, Andrew</creator><creator>Boerner, Paul</creator><creator>Low, Boon Chye</creator><creator>Shibata, Kazunari</creator><creator>Schrijver, Carolus</creator><creator>Tarbell, Ted</creator><creator>Title, Alan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20110414</creationdate><title>Magneto-thermal convection in solar prominences</title><author>Berger, Thomas ; Testa, Paola ; Hillier, Andrew ; Boerner, Paul ; Low, Boon Chye ; Shibata, Kazunari ; Schrijver, Carolus ; Tarbell, Ted ; Title, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c715t-8755f3344389d2cd82afc7f61d84b4dbb754b9badafdf30fd169f02bdcce9d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/33/525/870</topic><topic>Astronomy</topic><topic>Atmosphere</topic><topic>Bubbles</topic><topic>Buoyancy</topic><topic>Convection</topic><topic>Coronal mass ejection</topic><topic>Earth, ocean, space</topic><topic>Electric properties</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Holes</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Magnetic fields</topic><topic>Magnetooptics</topic><topic>multidisciplinary</topic><topic>Plasma</topic><topic>Plumes</topic><topic>Prominences</topic><topic>Ratios</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solar physics</topic><topic>Solar system</topic><topic>Sun</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Thomas</creatorcontrib><creatorcontrib>Testa, Paola</creatorcontrib><creatorcontrib>Hillier, Andrew</creatorcontrib><creatorcontrib>Boerner, Paul</creatorcontrib><creatorcontrib>Low, Boon Chye</creatorcontrib><creatorcontrib>Shibata, Kazunari</creatorcontrib><creatorcontrib>Schrijver, Carolus</creatorcontrib><creatorcontrib>Tarbell, Ted</creatorcontrib><creatorcontrib>Title, Alan</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Thomas</au><au>Testa, Paola</au><au>Hillier, Andrew</au><au>Boerner, Paul</au><au>Low, Boon Chye</au><au>Shibata, Kazunari</au><au>Schrijver, Carolus</au><au>Tarbell, Ted</au><au>Title, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magneto-thermal convection in solar prominences</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2011-04-14</date><risdate>2011</risdate><volume>472</volume><issue>7342</issue><spage>197</spage><epage>200</epage><pages>197-200</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Plasma bubbles in the solar corona Recent observations of solar prominences with the optical telescope aboard the Hinode satellite have revealed dark, low-density bubbles that undergo Rayleigh–Taylor instabilities and evolve into dark plumes within coronal cavities — large, low-density regions formed by hemispheric-scale magnetic flux ropes in the outer solar atmosphere. New optical and extreme-ultraviolet data from Hinode and the recently launched NASA Solar Dynamics Observatory show that these prominence cavity structures are heated to temperatures of at least 250,000 K and perhaps as high as 10 6 K, which is 25–100 times hotter than the overlying prominence. These findings identify a source of buoyancy for these plasma bubbles and point to a previously unrecognized form of magneto-thermal convection in the outer solar atmosphere. Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun’s outer atmosphere 1 . They evolve over time, eventually erupting as the dark cores of coronal mass ejections 2 , 3 . Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities evolve to an eruptive state remain poorly understood. Recent optical observations 4 of high-latitude ‘polar crown’ prominences within coronal cavities reveal dark, low-density 5 ‘bubbles’ that undergo Rayleigh–Taylor instabilities 6 , 7 to form dark plumes rising into overlying coronal cavities. These observations offered a possible mechanism for coronal cavity evolution, although the nature of the bubbles, particularly their buoyancy, was hitherto unclear. Here we report simultaneous optical and extreme-ultraviolet observations of polar crown prominences that show that these bubbles contain plasma at temperatures in the range (2.5–12) × 10 5 kelvin, which is 25–120 times hotter than the overlying prominence. This identifies a source of the buoyancy, and suggests that the coronal cavity–prominence system supports a novel form of magneto-thermal convection in the solar atmosphere, challenging current hydromagnetic concepts of prominences and their relation to coronal cavities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21490669</pmid><doi>10.1038/nature09925</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2011-04, Vol.472 (7342), p.197-200
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_876236180
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/33/525/870
Astronomy
Atmosphere
Bubbles
Buoyancy
Convection
Coronal mass ejection
Earth, ocean, space
Electric properties
Evolution
Exact sciences and technology
Holes
Humanities and Social Sciences
letter
Magnetic fields
Magnetooptics
multidisciplinary
Plasma
Plumes
Prominences
Ratios
Science
Science (multidisciplinary)
Solar physics
Solar system
Sun
Temperature
title Magneto-thermal convection in solar prominences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magneto-thermal%20convection%20in%20solar%20prominences&rft.jtitle=Nature%20(London)&rft.au=Berger,%20Thomas&rft.date=2011-04-14&rft.volume=472&rft.issue=7342&rft.spage=197&rft.epage=200&rft.pages=197-200&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature09925&rft_dat=%3Cgale_proqu%3EA254484716%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863667002&rft_id=info:pmid/21490669&rft_galeid=A254484716&rfr_iscdi=true