Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell
Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2011-05, Vol.189 (1), p.186-192 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | Journal of hazardous materials |
container_volume | 189 |
creator | Tao, Hu-Chun Liang, Min Li, Wei Zhang, Li-Juan Ni, Jin-Ren Wu, Wei-Min |
description | Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu
2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1
L) with different concentrations of CuSO
4 solution (50.3
±
5.8, 183.3
±
0.4, 482.4
±
9.6, 1007.9
±
52.0 and 6412.5
±
26.7
mg Cu
2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000
Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339
mW/m
3 at an initial 6412.5
±
26.7
mg Cu
2+/L concentration. High Cu
2+ removal efficiency (>99%) and final Cu
2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3
mg/L) was observed at an initial 196.2
±
0.4
mg Cu
2+/L concentration with an external resistor of 15
Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu
2+ was reduced to cuprous oxide (Cu
2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu
2+ concentration (0.1
M) but not in the others. The sustainability of high Cu
2+ removal (>96%) by MFC was further examined by fed-batch mode for eight cycles. |
doi_str_mv | 10.1016/j.jhazmat.2011.02.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876234749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411002032</els_id><sourcerecordid>1770363255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMozp3Rn6BmI7ppzUebpCuRwVFhQFBnHZL0xJtL29SkHRh_van3qjtnFTg85-PNg9AzSmpKqHhzqA9783M0S80IpTVhNaHqAdpRJXnFORcP0Y5w0lRcdc0ZOs_5QAihsm0eozNGuZRSqR3yX2CMt2bA0WMX5xkS9imO2PxYIa4Z5zisS4gTtncYBnBLij3MMYffxTBhZ5Z9KWG3N6Mt3WXOGFyKNpShfoUBOxiGJ-iRN0OGp6f3At1cvf92-bG6_vzh0-W768q1TbdUJYqkrO_6rnWKEW-kBesosUwqC0aAAEV6apvWikKA6a1X1IMXpGeiU_wCvTrOnVMsCfKix5C3A8y0xdFKCsYb2XT3k4Iyolq-zXz9X5JKSbjgrG0L2h7R8gE5J_B6TmE06U5Tojdt-qBP2vSmTROmi7bS9_y0YrUj9H-7_ngqwMsTYLIzg09mciH_4xpSgjFeuBdHzpuozfdUmJuvZVNb1HdECVmIt0cCiobbAElnF2By0IdU9Oo-hnuO_QXjrsLF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770363255</pqid></control><display><type>article</type><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</creator><creatorcontrib>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</creatorcontrib><description>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu
2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1
L) with different concentrations of CuSO
4 solution (50.3
±
5.8, 183.3
±
0.4, 482.4
±
9.6, 1007.9
±
52.0 and 6412.5
±
26.7
mg Cu
2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000
Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339
mW/m
3 at an initial 6412.5
±
26.7
mg Cu
2+/L concentration. High Cu
2+ removal efficiency (>99%) and final Cu
2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3
mg/L) was observed at an initial 196.2
±
0.4
mg Cu
2+/L concentration with an external resistor of 15
Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu
2+ was reduced to cuprous oxide (Cu
2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu
2+ concentration (0.1
M) but not in the others. The sustainability of high Cu
2+ removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.02.018</identifier><identifier>PMID: 21377788</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anaerobiosis ; Applied sciences ; aqueous solutions ; Biochemical fuel cells ; Bioelectric Energy Sources ; brochantite ; Cathodes ; Cathodic metal reduction ; Chambers ; Copper ; Copper - isolation & purification ; COPPER SULFATE ; cuprous oxide ; drinking water ; Drinking water and swimming-pool water. Desalination ; electricity ; Electrodeposition ; ELECTRODES ; Electroplating - methods ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; FUEL CELLS ; Global environmental pollution ; glucose ; inoculum ; maximum contaminant level ; MICRO ORGANISMS ; Microbial fuel cell ; microbial fuel cells ; Microorganisms ; organic matter ; Pollution ; PRECIPITATES ; RESISTORS ; Sewage - microbiology ; sludge ; SOLUTIONS ; Solutions - chemistry ; Water Pollutants, Chemical - isolation & purification ; Water treatment and pollution ; X-ray diffraction</subject><ispartof>Journal of hazardous materials, 2011-05, Vol.189 (1), p.186-192</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</citedby><cites>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24076223$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21377788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Hu-Chun</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Li-Juan</creatorcontrib><creatorcontrib>Ni, Jin-Ren</creatorcontrib><creatorcontrib>Wu, Wei-Min</creatorcontrib><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu
2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1
L) with different concentrations of CuSO
4 solution (50.3
±
5.8, 183.3
±
0.4, 482.4
±
9.6, 1007.9
±
52.0 and 6412.5
±
26.7
mg Cu
2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000
Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339
mW/m
3 at an initial 6412.5
±
26.7
mg Cu
2+/L concentration. High Cu
2+ removal efficiency (>99%) and final Cu
2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3
mg/L) was observed at an initial 196.2
±
0.4
mg Cu
2+/L concentration with an external resistor of 15
Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu
2+ was reduced to cuprous oxide (Cu
2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu
2+ concentration (0.1
M) but not in the others. The sustainability of high Cu
2+ removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.</description><subject>Anaerobiosis</subject><subject>Applied sciences</subject><subject>aqueous solutions</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources</subject><subject>brochantite</subject><subject>Cathodes</subject><subject>Cathodic metal reduction</subject><subject>Chambers</subject><subject>Copper</subject><subject>Copper - isolation & purification</subject><subject>COPPER SULFATE</subject><subject>cuprous oxide</subject><subject>drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>electricity</subject><subject>Electrodeposition</subject><subject>ELECTRODES</subject><subject>Electroplating - methods</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>FUEL CELLS</subject><subject>Global environmental pollution</subject><subject>glucose</subject><subject>inoculum</subject><subject>maximum contaminant level</subject><subject>MICRO ORGANISMS</subject><subject>Microbial fuel cell</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>organic matter</subject><subject>Pollution</subject><subject>PRECIPITATES</subject><subject>RESISTORS</subject><subject>Sewage - microbiology</subject><subject>sludge</subject><subject>SOLUTIONS</subject><subject>Solutions - chemistry</subject><subject>Water Pollutants, Chemical - isolation & purification</subject><subject>Water treatment and pollution</subject><subject>X-ray diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2L1TAUhoMozp3Rn6BmI7ppzUebpCuRwVFhQFBnHZL0xJtL29SkHRh_van3qjtnFTg85-PNg9AzSmpKqHhzqA9783M0S80IpTVhNaHqAdpRJXnFORcP0Y5w0lRcdc0ZOs_5QAihsm0eozNGuZRSqR3yX2CMt2bA0WMX5xkS9imO2PxYIa4Z5zisS4gTtncYBnBLij3MMYffxTBhZ5Z9KWG3N6Mt3WXOGFyKNpShfoUBOxiGJ-iRN0OGp6f3At1cvf92-bG6_vzh0-W768q1TbdUJYqkrO_6rnWKEW-kBesosUwqC0aAAEV6apvWikKA6a1X1IMXpGeiU_wCvTrOnVMsCfKix5C3A8y0xdFKCsYb2XT3k4Iyolq-zXz9X5JKSbjgrG0L2h7R8gE5J_B6TmE06U5Tojdt-qBP2vSmTROmi7bS9_y0YrUj9H-7_ngqwMsTYLIzg09mciH_4xpSgjFeuBdHzpuozfdUmJuvZVNb1HdECVmIt0cCiobbAElnF2By0IdU9Oo-hnuO_QXjrsLF</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Tao, Hu-Chun</creator><creator>Liang, Min</creator><creator>Li, Wei</creator><creator>Zhang, Li-Juan</creator><creator>Ni, Jin-Ren</creator><creator>Wu, Wei-Min</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7U6</scope><scope>7U7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110515</creationdate><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><author>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anaerobiosis</topic><topic>Applied sciences</topic><topic>aqueous solutions</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources</topic><topic>brochantite</topic><topic>Cathodes</topic><topic>Cathodic metal reduction</topic><topic>Chambers</topic><topic>Copper</topic><topic>Copper - isolation & purification</topic><topic>COPPER SULFATE</topic><topic>cuprous oxide</topic><topic>drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>electricity</topic><topic>Electrodeposition</topic><topic>ELECTRODES</topic><topic>Electroplating - methods</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>FUEL CELLS</topic><topic>Global environmental pollution</topic><topic>glucose</topic><topic>inoculum</topic><topic>maximum contaminant level</topic><topic>MICRO ORGANISMS</topic><topic>Microbial fuel cell</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>organic matter</topic><topic>Pollution</topic><topic>PRECIPITATES</topic><topic>RESISTORS</topic><topic>Sewage - microbiology</topic><topic>sludge</topic><topic>SOLUTIONS</topic><topic>Solutions - chemistry</topic><topic>Water Pollutants, Chemical - isolation & purification</topic><topic>Water treatment and pollution</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Hu-Chun</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Li-Juan</creatorcontrib><creatorcontrib>Ni, Jin-Ren</creatorcontrib><creatorcontrib>Wu, Wei-Min</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Hu-Chun</au><au>Liang, Min</au><au>Li, Wei</au><au>Zhang, Li-Juan</au><au>Ni, Jin-Ren</au><au>Wu, Wei-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>189</volume><issue>1</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu
2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1
L) with different concentrations of CuSO
4 solution (50.3
±
5.8, 183.3
±
0.4, 482.4
±
9.6, 1007.9
±
52.0 and 6412.5
±
26.7
mg Cu
2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000
Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339
mW/m
3 at an initial 6412.5
±
26.7
mg Cu
2+/L concentration. High Cu
2+ removal efficiency (>99%) and final Cu
2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3
mg/L) was observed at an initial 196.2
±
0.4
mg Cu
2+/L concentration with an external resistor of 15
Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu
2+ was reduced to cuprous oxide (Cu
2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu
2+ concentration (0.1
M) but not in the others. The sustainability of high Cu
2+ removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21377788</pmid><doi>10.1016/j.jhazmat.2011.02.018</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2011-05, Vol.189 (1), p.186-192 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_proquest_miscellaneous_876234749 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anaerobiosis Applied sciences aqueous solutions Biochemical fuel cells Bioelectric Energy Sources brochantite Cathodes Cathodic metal reduction Chambers Copper Copper - isolation & purification COPPER SULFATE cuprous oxide drinking water Drinking water and swimming-pool water. Desalination electricity Electrodeposition ELECTRODES Electroplating - methods Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology FUEL CELLS Global environmental pollution glucose inoculum maximum contaminant level MICRO ORGANISMS Microbial fuel cell microbial fuel cells Microorganisms organic matter Pollution PRECIPITATES RESISTORS Sewage - microbiology sludge SOLUTIONS Solutions - chemistry Water Pollutants, Chemical - isolation & purification Water treatment and pollution X-ray diffraction |
title | Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20copper%20from%20aqueous%20solution%20by%20electrodeposition%20in%20cathode%20chamber%20of%20microbial%20fuel%20cell&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Tao,%20Hu-Chun&rft.date=2011-05-15&rft.volume=189&rft.issue=1&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.02.018&rft_dat=%3Cproquest_cross%3E1770363255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770363255&rft_id=info:pmid/21377788&rft_els_id=S0304389411002032&rfr_iscdi=true |