Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell

Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2011-05, Vol.189 (1), p.186-192
Hauptverfasser: Tao, Hu-Chun, Liang, Min, Li, Wei, Zhang, Li-Juan, Ni, Jin-Ren, Wu, Wei-Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 186
container_title Journal of hazardous materials
container_volume 189
creator Tao, Hu-Chun
Liang, Min
Li, Wei
Zhang, Li-Juan
Ni, Jin-Ren
Wu, Wei-Min
description Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1 L) with different concentrations of CuSO 4 solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu 2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m 3 at an initial 6412.5 ± 26.7 mg Cu 2+/L concentration. High Cu 2+ removal efficiency (>99%) and final Cu 2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3 mg/L) was observed at an initial 196.2 ± 0.4 mg Cu 2+/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu 2+ was reduced to cuprous oxide (Cu 2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu 2+ concentration (0.1 M) but not in the others. The sustainability of high Cu 2+ removal (>96%) by MFC was further examined by fed-batch mode for eight cycles.
doi_str_mv 10.1016/j.jhazmat.2011.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876234749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389411002032</els_id><sourcerecordid>1770363255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMozp3Rn6BmI7ppzUebpCuRwVFhQFBnHZL0xJtL29SkHRh_van3qjtnFTg85-PNg9AzSmpKqHhzqA9783M0S80IpTVhNaHqAdpRJXnFORcP0Y5w0lRcdc0ZOs_5QAihsm0eozNGuZRSqR3yX2CMt2bA0WMX5xkS9imO2PxYIa4Z5zisS4gTtncYBnBLij3MMYffxTBhZ5Z9KWG3N6Mt3WXOGFyKNpShfoUBOxiGJ-iRN0OGp6f3At1cvf92-bG6_vzh0-W768q1TbdUJYqkrO_6rnWKEW-kBesosUwqC0aAAEV6apvWikKA6a1X1IMXpGeiU_wCvTrOnVMsCfKix5C3A8y0xdFKCsYb2XT3k4Iyolq-zXz9X5JKSbjgrG0L2h7R8gE5J_B6TmE06U5Tojdt-qBP2vSmTROmi7bS9_y0YrUj9H-7_ngqwMsTYLIzg09mciH_4xpSgjFeuBdHzpuozfdUmJuvZVNb1HdECVmIt0cCiobbAElnF2By0IdU9Oo-hnuO_QXjrsLF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770363255</pqid></control><display><type>article</type><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</creator><creatorcontrib>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</creatorcontrib><description>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1 L) with different concentrations of CuSO 4 solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu 2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m 3 at an initial 6412.5 ± 26.7 mg Cu 2+/L concentration. High Cu 2+ removal efficiency (&gt;99%) and final Cu 2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3 mg/L) was observed at an initial 196.2 ± 0.4 mg Cu 2+/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu 2+ was reduced to cuprous oxide (Cu 2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu 2+ concentration (0.1 M) but not in the others. The sustainability of high Cu 2+ removal (&gt;96%) by MFC was further examined by fed-batch mode for eight cycles.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2011.02.018</identifier><identifier>PMID: 21377788</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anaerobiosis ; Applied sciences ; aqueous solutions ; Biochemical fuel cells ; Bioelectric Energy Sources ; brochantite ; Cathodes ; Cathodic metal reduction ; Chambers ; Copper ; Copper - isolation &amp; purification ; COPPER SULFATE ; cuprous oxide ; drinking water ; Drinking water and swimming-pool water. Desalination ; electricity ; Electrodeposition ; ELECTRODES ; Electroplating - methods ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; FUEL CELLS ; Global environmental pollution ; glucose ; inoculum ; maximum contaminant level ; MICRO ORGANISMS ; Microbial fuel cell ; microbial fuel cells ; Microorganisms ; organic matter ; Pollution ; PRECIPITATES ; RESISTORS ; Sewage - microbiology ; sludge ; SOLUTIONS ; Solutions - chemistry ; Water Pollutants, Chemical - isolation &amp; purification ; Water treatment and pollution ; X-ray diffraction</subject><ispartof>Journal of hazardous materials, 2011-05, Vol.189 (1), p.186-192</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</citedby><cites>FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2011.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24076223$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21377788$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tao, Hu-Chun</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Li-Juan</creatorcontrib><creatorcontrib>Ni, Jin-Ren</creatorcontrib><creatorcontrib>Wu, Wei-Min</creatorcontrib><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1 L) with different concentrations of CuSO 4 solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu 2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m 3 at an initial 6412.5 ± 26.7 mg Cu 2+/L concentration. High Cu 2+ removal efficiency (&gt;99%) and final Cu 2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3 mg/L) was observed at an initial 196.2 ± 0.4 mg Cu 2+/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu 2+ was reduced to cuprous oxide (Cu 2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu 2+ concentration (0.1 M) but not in the others. The sustainability of high Cu 2+ removal (&gt;96%) by MFC was further examined by fed-batch mode for eight cycles.</description><subject>Anaerobiosis</subject><subject>Applied sciences</subject><subject>aqueous solutions</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources</subject><subject>brochantite</subject><subject>Cathodes</subject><subject>Cathodic metal reduction</subject><subject>Chambers</subject><subject>Copper</subject><subject>Copper - isolation &amp; purification</subject><subject>COPPER SULFATE</subject><subject>cuprous oxide</subject><subject>drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>electricity</subject><subject>Electrodeposition</subject><subject>ELECTRODES</subject><subject>Electroplating - methods</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>FUEL CELLS</subject><subject>Global environmental pollution</subject><subject>glucose</subject><subject>inoculum</subject><subject>maximum contaminant level</subject><subject>MICRO ORGANISMS</subject><subject>Microbial fuel cell</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>organic matter</subject><subject>Pollution</subject><subject>PRECIPITATES</subject><subject>RESISTORS</subject><subject>Sewage - microbiology</subject><subject>sludge</subject><subject>SOLUTIONS</subject><subject>Solutions - chemistry</subject><subject>Water Pollutants, Chemical - isolation &amp; purification</subject><subject>Water treatment and pollution</subject><subject>X-ray diffraction</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2L1TAUhoMozp3Rn6BmI7ppzUebpCuRwVFhQFBnHZL0xJtL29SkHRh_van3qjtnFTg85-PNg9AzSmpKqHhzqA9783M0S80IpTVhNaHqAdpRJXnFORcP0Y5w0lRcdc0ZOs_5QAihsm0eozNGuZRSqR3yX2CMt2bA0WMX5xkS9imO2PxYIa4Z5zisS4gTtncYBnBLij3MMYffxTBhZ5Z9KWG3N6Mt3WXOGFyKNpShfoUBOxiGJ-iRN0OGp6f3At1cvf92-bG6_vzh0-W768q1TbdUJYqkrO_6rnWKEW-kBesosUwqC0aAAEV6apvWikKA6a1X1IMXpGeiU_wCvTrOnVMsCfKix5C3A8y0xdFKCsYb2XT3k4Iyolq-zXz9X5JKSbjgrG0L2h7R8gE5J_B6TmE06U5Tojdt-qBP2vSmTROmi7bS9_y0YrUj9H-7_ngqwMsTYLIzg09mciH_4xpSgjFeuBdHzpuozfdUmJuvZVNb1HdECVmIt0cCiobbAElnF2By0IdU9Oo-hnuO_QXjrsLF</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Tao, Hu-Chun</creator><creator>Liang, Min</creator><creator>Li, Wei</creator><creator>Zhang, Li-Juan</creator><creator>Ni, Jin-Ren</creator><creator>Wu, Wei-Min</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7X8</scope><scope>7ST</scope><scope>7T7</scope><scope>7TV</scope><scope>7U6</scope><scope>7U7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110515</creationdate><title>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</title><author>Tao, Hu-Chun ; Liang, Min ; Li, Wei ; Zhang, Li-Juan ; Ni, Jin-Ren ; Wu, Wei-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-201712d9d95c820fa7bebc10b278bea6e6e80d1b45b65c8eadbf81fef60d26983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anaerobiosis</topic><topic>Applied sciences</topic><topic>aqueous solutions</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources</topic><topic>brochantite</topic><topic>Cathodes</topic><topic>Cathodic metal reduction</topic><topic>Chambers</topic><topic>Copper</topic><topic>Copper - isolation &amp; purification</topic><topic>COPPER SULFATE</topic><topic>cuprous oxide</topic><topic>drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>electricity</topic><topic>Electrodeposition</topic><topic>ELECTRODES</topic><topic>Electroplating - methods</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>FUEL CELLS</topic><topic>Global environmental pollution</topic><topic>glucose</topic><topic>inoculum</topic><topic>maximum contaminant level</topic><topic>MICRO ORGANISMS</topic><topic>Microbial fuel cell</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>organic matter</topic><topic>Pollution</topic><topic>PRECIPITATES</topic><topic>RESISTORS</topic><topic>Sewage - microbiology</topic><topic>sludge</topic><topic>SOLUTIONS</topic><topic>Solutions - chemistry</topic><topic>Water Pollutants, Chemical - isolation &amp; purification</topic><topic>Water treatment and pollution</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Hu-Chun</creatorcontrib><creatorcontrib>Liang, Min</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Li-Juan</creatorcontrib><creatorcontrib>Ni, Jin-Ren</creatorcontrib><creatorcontrib>Wu, Wei-Min</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Hu-Chun</au><au>Liang, Min</au><au>Li, Wei</au><au>Zhang, Li-Juan</au><au>Ni, Jin-Ren</au><au>Wu, Wei-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>189</volume><issue>1</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu 2O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber volume, 1 L) with different concentrations of CuSO 4 solution (50.3 ± 5.8, 183.3 ± 0.4, 482.4 ± 9.6, 1007.9 ± 52.0 and 6412.5 ± 26.7 mg Cu 2+/L) as catholyte at pH 4.7, and different resistors (0, 15, 390 and 1000 Ω) as external load. With glucose as a substrate and anaerobic sludge as an inoculum, the maximum power density generated was 339 mW/m 3 at an initial 6412.5 ± 26.7 mg Cu 2+/L concentration. High Cu 2+ removal efficiency (&gt;99%) and final Cu 2+ concentration below the USA EPA maximum contaminant level (MCL) for drinking water (1.3 mg/L) was observed at an initial 196.2 ± 0.4 mg Cu 2+/L concentration with an external resistor of 15 Ω, or without an external resistor. X-ray diffraction analysis confirmed that Cu 2+ was reduced to cuprous oxide (Cu 2O) and metal copper (Cu) on the cathodes. Non-reduced brochantite precipitates were observed as major copper precipitates in the MFC with a high initial Cu 2+ concentration (0.1 M) but not in the others. The sustainability of high Cu 2+ removal (&gt;96%) by MFC was further examined by fed-batch mode for eight cycles.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21377788</pmid><doi>10.1016/j.jhazmat.2011.02.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2011-05, Vol.189 (1), p.186-192
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_876234749
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anaerobiosis
Applied sciences
aqueous solutions
Biochemical fuel cells
Bioelectric Energy Sources
brochantite
Cathodes
Cathodic metal reduction
Chambers
Copper
Copper - isolation & purification
COPPER SULFATE
cuprous oxide
drinking water
Drinking water and swimming-pool water. Desalination
electricity
Electrodeposition
ELECTRODES
Electroplating - methods
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
FUEL CELLS
Global environmental pollution
glucose
inoculum
maximum contaminant level
MICRO ORGANISMS
Microbial fuel cell
microbial fuel cells
Microorganisms
organic matter
Pollution
PRECIPITATES
RESISTORS
Sewage - microbiology
sludge
SOLUTIONS
Solutions - chemistry
Water Pollutants, Chemical - isolation & purification
Water treatment and pollution
X-ray diffraction
title Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removal%20of%20copper%20from%20aqueous%20solution%20by%20electrodeposition%20in%20cathode%20chamber%20of%20microbial%20fuel%20cell&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Tao,%20Hu-Chun&rft.date=2011-05-15&rft.volume=189&rft.issue=1&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2011.02.018&rft_dat=%3Cproquest_cross%3E1770363255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770363255&rft_id=info:pmid/21377788&rft_els_id=S0304389411002032&rfr_iscdi=true