Fourth order pseudo maximum likelihood methods

We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometrics 2011-06, Vol.162 (2), p.278-293
Hauptverfasser: Holly, Alberto, Monfort, Alain, Rockinger, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 2
container_start_page 278
container_title Econometrics
container_volume 162
creator Holly, Alberto
Monfort, Alain
Rockinger, Michael
description We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.
doi_str_mv 10.1016/j.jeconom.2011.01.004
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_876228892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440761100025X</els_id><sourcerecordid>870441187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</originalsourceid><addsrcrecordid>eNqNkc-L1TAQx4Mo-Fz9E4TiRTy0Tn42PcmyuK74wIueQ5rOo6ntS03ah_vfm9plD140zGRC-HyH-UHIawoVBareD9WALpzDVDGgtIJsIJ6QA9U1K5Vu5FNyAA6iFFCr5-RFSgMASKH5gVS3YY1LX4TYYSzmhGsXisn-8tM6FaP_gaPvQ-iKCZc-dOkleXayY8JXD_GKfL_9-O3mrjx-_fT55vpYOkXZUjJLBbY1RdEIraCRjp2At6KVUraMdyiYELW1TVtDA04iUO4oF0pmwnaaX5F3e97ejmaOfrLx3gTrzd310Wx_AJpKqdiFZvbtzs4x_FwxLWbyyeE42jOGNRldK8a0bth_kCAEzWPL5Ju_yCHP6ZxbNloJzTivRYbkDrkYUop4eqyUgtk2YwbzsBmzbcZANth0X3ZdxBndowjz2eGL4ZYqlu_77H-kPPeen9nnLdbasIabfplytg97Nsz7uHiMJjmPZ4edj-gW0wX_j3p-A6FWr4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864823374</pqid></control><display><type>article</type><title>Fourth order pseudo maximum likelihood methods</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</creator><creatorcontrib>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</creatorcontrib><description>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</description><identifier>ISSN: 0304-4076</identifier><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 1872-6895</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.1016/j.jeconom.2011.01.004</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Computational methods ; Conditional moments ; Econometric models ; Econometrics ; Estimation ; Kurtosis ; Maximum likelihood method ; Numerical analysis ; Pseudo maximum likelihood ; Pseudo maximum likelihood methods ; Quantitative Finance ; Quartic exponential family ; Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis ; Simulation ; Simulation techniques ; Skewness ; Statistical Finance ; Statistical models ; Studies</subject><ispartof>Econometrics, 2011-06, Vol.162 (2), p.278-293</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</citedby><cites>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2011.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a162_3ay_3a2011_3ai_3a2_3ap_3a278-293.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00815562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Holly, Alberto</creatorcontrib><creatorcontrib>Monfort, Alain</creatorcontrib><creatorcontrib>Rockinger, Michael</creatorcontrib><title>Fourth order pseudo maximum likelihood methods</title><title>Econometrics</title><description>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</description><subject>Asymptotic methods</subject><subject>Computational methods</subject><subject>Conditional moments</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimation</subject><subject>Kurtosis</subject><subject>Maximum likelihood method</subject><subject>Numerical analysis</subject><subject>Pseudo maximum likelihood</subject><subject>Pseudo maximum likelihood methods</subject><subject>Quantitative Finance</subject><subject>Quartic exponential family</subject><subject>Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis</subject><subject>Simulation</subject><subject>Simulation techniques</subject><subject>Skewness</subject><subject>Statistical Finance</subject><subject>Statistical models</subject><subject>Studies</subject><issn>0304-4076</issn><issn>2225-1146</issn><issn>1872-6895</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkc-L1TAQx4Mo-Fz9E4TiRTy0Tn42PcmyuK74wIueQ5rOo6ntS03ah_vfm9plD140zGRC-HyH-UHIawoVBareD9WALpzDVDGgtIJsIJ6QA9U1K5Vu5FNyAA6iFFCr5-RFSgMASKH5gVS3YY1LX4TYYSzmhGsXisn-8tM6FaP_gaPvQ-iKCZc-dOkleXayY8JXD_GKfL_9-O3mrjx-_fT55vpYOkXZUjJLBbY1RdEIraCRjp2At6KVUraMdyiYELW1TVtDA04iUO4oF0pmwnaaX5F3e97ejmaOfrLx3gTrzd310Wx_AJpKqdiFZvbtzs4x_FwxLWbyyeE42jOGNRldK8a0bth_kCAEzWPL5Ju_yCHP6ZxbNloJzTivRYbkDrkYUop4eqyUgtk2YwbzsBmzbcZANth0X3ZdxBndowjz2eGL4ZYqlu_77H-kPPeen9nnLdbasIabfplytg97Nsz7uHiMJjmPZ4edj-gW0wX_j3p-A6FWr4E</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Holly, Alberto</creator><creator>Monfort, Alain</creator><creator>Rockinger, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><general>MDPI</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110601</creationdate><title>Fourth order pseudo maximum likelihood methods</title><author>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic methods</topic><topic>Computational methods</topic><topic>Conditional moments</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimation</topic><topic>Kurtosis</topic><topic>Maximum likelihood method</topic><topic>Numerical analysis</topic><topic>Pseudo maximum likelihood</topic><topic>Pseudo maximum likelihood methods</topic><topic>Quantitative Finance</topic><topic>Quartic exponential family</topic><topic>Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis</topic><topic>Simulation</topic><topic>Simulation techniques</topic><topic>Skewness</topic><topic>Statistical Finance</topic><topic>Statistical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holly, Alberto</creatorcontrib><creatorcontrib>Monfort, Alain</creatorcontrib><creatorcontrib>Rockinger, Michael</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holly, Alberto</au><au>Monfort, Alain</au><au>Rockinger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourth order pseudo maximum likelihood methods</atitle><jtitle>Econometrics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>162</volume><issue>2</issue><spage>278</spage><epage>293</epage><pages>278-293</pages><issn>0304-4076</issn><issn>2225-1146</issn><eissn>1872-6895</eissn><eissn>2225-1146</eissn><coden>JECMB6</coden><abstract>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.01.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Econometrics, 2011-06, Vol.162 (2), p.278-293
issn 0304-4076
2225-1146
1872-6895
2225-1146
language eng
recordid cdi_proquest_miscellaneous_876228892
source RePEc; Access via ScienceDirect (Elsevier)
subjects Asymptotic methods
Computational methods
Conditional moments
Econometric models
Econometrics
Estimation
Kurtosis
Maximum likelihood method
Numerical analysis
Pseudo maximum likelihood
Pseudo maximum likelihood methods
Quantitative Finance
Quartic exponential family
Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis
Simulation
Simulation techniques
Skewness
Statistical Finance
Statistical models
Studies
title Fourth order pseudo maximum likelihood methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourth%20order%20pseudo%20maximum%20likelihood%20methods&rft.jtitle=Econometrics&rft.au=Holly,%20Alberto&rft.date=2011-06-01&rft.volume=162&rft.issue=2&rft.spage=278&rft.epage=293&rft.pages=278-293&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.01.004&rft_dat=%3Cproquest_hal_p%3E870441187%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864823374&rft_id=info:pmid/&rft_els_id=S030440761100025X&rfr_iscdi=true