Fourth order pseudo maximum likelihood methods
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML...
Gespeichert in:
Veröffentlicht in: | Econometrics 2011-06, Vol.162 (2), p.278-293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 293 |
---|---|
container_issue | 2 |
container_start_page | 278 |
container_title | Econometrics |
container_volume | 162 |
creator | Holly, Alberto Monfort, Alain Rockinger, Michael |
description | We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in
Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods. |
doi_str_mv | 10.1016/j.jeconom.2011.01.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_876228892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440761100025X</els_id><sourcerecordid>870441187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</originalsourceid><addsrcrecordid>eNqNkc-L1TAQx4Mo-Fz9E4TiRTy0Tn42PcmyuK74wIueQ5rOo6ntS03ah_vfm9plD140zGRC-HyH-UHIawoVBareD9WALpzDVDGgtIJsIJ6QA9U1K5Vu5FNyAA6iFFCr5-RFSgMASKH5gVS3YY1LX4TYYSzmhGsXisn-8tM6FaP_gaPvQ-iKCZc-dOkleXayY8JXD_GKfL_9-O3mrjx-_fT55vpYOkXZUjJLBbY1RdEIraCRjp2At6KVUraMdyiYELW1TVtDA04iUO4oF0pmwnaaX5F3e97ejmaOfrLx3gTrzd310Wx_AJpKqdiFZvbtzs4x_FwxLWbyyeE42jOGNRldK8a0bth_kCAEzWPL5Ju_yCHP6ZxbNloJzTivRYbkDrkYUop4eqyUgtk2YwbzsBmzbcZANth0X3ZdxBndowjz2eGL4ZYqlu_77H-kPPeen9nnLdbasIabfplytg97Nsz7uHiMJjmPZ4edj-gW0wX_j3p-A6FWr4E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864823374</pqid></control><display><type>article</type><title>Fourth order pseudo maximum likelihood methods</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</creator><creatorcontrib>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</creatorcontrib><description>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in
Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</description><identifier>ISSN: 0304-4076</identifier><identifier>ISSN: 2225-1146</identifier><identifier>EISSN: 1872-6895</identifier><identifier>EISSN: 2225-1146</identifier><identifier>DOI: 10.1016/j.jeconom.2011.01.004</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Computational methods ; Conditional moments ; Econometric models ; Econometrics ; Estimation ; Kurtosis ; Maximum likelihood method ; Numerical analysis ; Pseudo maximum likelihood ; Pseudo maximum likelihood methods ; Quantitative Finance ; Quartic exponential family ; Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis ; Simulation ; Simulation techniques ; Skewness ; Statistical Finance ; Statistical models ; Studies</subject><ispartof>Econometrics, 2011-06, Vol.162 (2), p.278-293</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jun 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</citedby><cites>FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2011.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a162_3ay_3a2011_3ai_3a2_3ap_3a278-293.htm$$DView record in RePEc$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00815562$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Holly, Alberto</creatorcontrib><creatorcontrib>Monfort, Alain</creatorcontrib><creatorcontrib>Rockinger, Michael</creatorcontrib><title>Fourth order pseudo maximum likelihood methods</title><title>Econometrics</title><description>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in
Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</description><subject>Asymptotic methods</subject><subject>Computational methods</subject><subject>Conditional moments</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Estimation</subject><subject>Kurtosis</subject><subject>Maximum likelihood method</subject><subject>Numerical analysis</subject><subject>Pseudo maximum likelihood</subject><subject>Pseudo maximum likelihood methods</subject><subject>Quantitative Finance</subject><subject>Quartic exponential family</subject><subject>Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis</subject><subject>Simulation</subject><subject>Simulation techniques</subject><subject>Skewness</subject><subject>Statistical Finance</subject><subject>Statistical models</subject><subject>Studies</subject><issn>0304-4076</issn><issn>2225-1146</issn><issn>1872-6895</issn><issn>2225-1146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkc-L1TAQx4Mo-Fz9E4TiRTy0Tn42PcmyuK74wIueQ5rOo6ntS03ah_vfm9plD140zGRC-HyH-UHIawoVBareD9WALpzDVDGgtIJsIJ6QA9U1K5Vu5FNyAA6iFFCr5-RFSgMASKH5gVS3YY1LX4TYYSzmhGsXisn-8tM6FaP_gaPvQ-iKCZc-dOkleXayY8JXD_GKfL_9-O3mrjx-_fT55vpYOkXZUjJLBbY1RdEIraCRjp2At6KVUraMdyiYELW1TVtDA04iUO4oF0pmwnaaX5F3e97ejmaOfrLx3gTrzd310Wx_AJpKqdiFZvbtzs4x_FwxLWbyyeE42jOGNRldK8a0bth_kCAEzWPL5Ju_yCHP6ZxbNloJzTivRYbkDrkYUop4eqyUgtk2YwbzsBmzbcZANth0X3ZdxBndowjz2eGL4ZYqlu_77H-kPPeen9nnLdbasIabfplytg97Nsz7uHiMJjmPZ4edj-gW0wX_j3p-A6FWr4E</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Holly, Alberto</creator><creator>Monfort, Alain</creator><creator>Rockinger, Michael</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><general>MDPI</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20110601</creationdate><title>Fourth order pseudo maximum likelihood methods</title><author>Holly, Alberto ; Monfort, Alain ; Rockinger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-2a14eb71e49486095c2f03b4b555b23de42447aa9b7090c5e013c13465b55ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic methods</topic><topic>Computational methods</topic><topic>Conditional moments</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Estimation</topic><topic>Kurtosis</topic><topic>Maximum likelihood method</topic><topic>Numerical analysis</topic><topic>Pseudo maximum likelihood</topic><topic>Pseudo maximum likelihood methods</topic><topic>Quantitative Finance</topic><topic>Quartic exponential family</topic><topic>Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis</topic><topic>Simulation</topic><topic>Simulation techniques</topic><topic>Skewness</topic><topic>Statistical Finance</topic><topic>Statistical models</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holly, Alberto</creatorcontrib><creatorcontrib>Monfort, Alain</creatorcontrib><creatorcontrib>Rockinger, Michael</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holly, Alberto</au><au>Monfort, Alain</au><au>Rockinger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fourth order pseudo maximum likelihood methods</atitle><jtitle>Econometrics</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>162</volume><issue>2</issue><spage>278</spage><epage>293</epage><pages>278-293</pages><issn>0304-4076</issn><issn>2225-1146</issn><eissn>1872-6895</eissn><eissn>2225-1146</eissn><coden>JECMB6</coden><abstract>We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in
Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss–Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.01.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Econometrics, 2011-06, Vol.162 (2), p.278-293 |
issn | 0304-4076 2225-1146 1872-6895 2225-1146 |
language | eng |
recordid | cdi_proquest_miscellaneous_876228892 |
source | RePEc; Access via ScienceDirect (Elsevier) |
subjects | Asymptotic methods Computational methods Conditional moments Econometric models Econometrics Estimation Kurtosis Maximum likelihood method Numerical analysis Pseudo maximum likelihood Pseudo maximum likelihood methods Quantitative Finance Quartic exponential family Quartic exponential family Pseudo maximum likelihood Skewness Kurtosis Simulation Simulation techniques Skewness Statistical Finance Statistical models Studies |
title | Fourth order pseudo maximum likelihood methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fourth%20order%20pseudo%20maximum%20likelihood%20methods&rft.jtitle=Econometrics&rft.au=Holly,%20Alberto&rft.date=2011-06-01&rft.volume=162&rft.issue=2&rft.spage=278&rft.epage=293&rft.pages=278-293&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.01.004&rft_dat=%3Cproquest_hal_p%3E870441187%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864823374&rft_id=info:pmid/&rft_els_id=S030440761100025X&rfr_iscdi=true |