A New Approach to Homogenize Daily Radiosonde Humidity Data
Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices....
Gespeichert in:
Veröffentlicht in: | Journal of climate 2011-02, Vol.24 (4), p.965-991 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 991 |
---|---|
container_issue | 4 |
container_start_page | 965 |
container_title | Journal of climate |
container_volume | 24 |
creator | Dai, Aiguo Wang, Junhong Thorne, Peter W. Parker, David E. Haimberger, Leopold Wang, Xiaolan L. |
description | Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximalFtest (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T< −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.
Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity para |
doi_str_mv | 10.1175/2010jcli3816.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_876228863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26190412</jstor_id><sourcerecordid>26190412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-6c142c376cd9f13abc690445984564a8c2185fee38cdcb9b73c547e392b13fa63</originalsourceid><addsrcrecordid>eNpdkM1LxDAUxIMouK5evQlFEE9d8_LVFE_L-rHKoiB6LmmaakrbrE2LrH-9KbsoeHqH-c0wbxA6BTwDSPgVwYArXVsqQcxgD02AExxjxsg-mmCZslgmnB-iI-8rjIEIjCfoeh49ma9ovl53TumPqHfR0jXu3bT220Q3ytab6EUV1nnXFiZaDo0tbL8JSq-O0UGpam9OdneK3u5uXxfLePV8_7CYr2LNuOhjoYERTROhi7QEqnIt0tCKpzLITElNQPLSGCp1ofM0T6jmLDE0JTnQUgk6RZfb3NDxczC-zxrrtalr1Ro3-EwmghApBQ3k-T-yckPXhnKZ5JLhRPIxbraFdOe870yZrTvbqG6TAc7GJbNxycfF6mFcMoNguNilKq9VXXaq1db_ughNGYGEBe5sy1W-d92fLiD8C4T-ANBWeoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858407856</pqid></control><display><type>article</type><title>A New Approach to Homogenize Daily Radiosonde Humidity Data</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dai, Aiguo ; Wang, Junhong ; Thorne, Peter W. ; Parker, David E. ; Haimberger, Leopold ; Wang, Xiaolan L.</creator><creatorcontrib>Dai, Aiguo ; Wang, Junhong ; Thorne, Peter W. ; Parker, David E. ; Haimberger, Leopold ; Wang, Xiaolan L.</creatorcontrib><description>Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximalFtest (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T< −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.
Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/2010jcli3816.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Air temperature ; Atmospherics ; Climate change ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Histograms ; Homogenization ; Humidity ; Hygrometers ; Instrumentation ; Metadata ; Meteorological satellites ; Meteorology ; Radiosondes ; Relative humidity ; Sampling bias ; Time series ; Troposphere ; Vapor pressure ; Water vapor</subject><ispartof>Journal of climate, 2011-02, Vol.24 (4), p.965-991</ispartof><rights>2011 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Feb 15, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-6c142c376cd9f13abc690445984564a8c2185fee38cdcb9b73c547e392b13fa63</citedby><cites>FETCH-LOGICAL-c456t-6c142c376cd9f13abc690445984564a8c2185fee38cdcb9b73c547e392b13fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26190412$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26190412$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23942174$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Aiguo</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><creatorcontrib>Thorne, Peter W.</creatorcontrib><creatorcontrib>Parker, David E.</creatorcontrib><creatorcontrib>Haimberger, Leopold</creatorcontrib><creatorcontrib>Wang, Xiaolan L.</creatorcontrib><title>A New Approach to Homogenize Daily Radiosonde Humidity Data</title><title>Journal of climate</title><description>Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximalFtest (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T< −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.
Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.</description><subject>Air temperature</subject><subject>Atmospherics</subject><subject>Climate change</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Histograms</subject><subject>Homogenization</subject><subject>Humidity</subject><subject>Hygrometers</subject><subject>Instrumentation</subject><subject>Metadata</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Radiosondes</subject><subject>Relative humidity</subject><subject>Sampling bias</subject><subject>Time series</subject><subject>Troposphere</subject><subject>Vapor pressure</subject><subject>Water vapor</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkM1LxDAUxIMouK5evQlFEE9d8_LVFE_L-rHKoiB6LmmaakrbrE2LrH-9KbsoeHqH-c0wbxA6BTwDSPgVwYArXVsqQcxgD02AExxjxsg-mmCZslgmnB-iI-8rjIEIjCfoeh49ma9ovl53TumPqHfR0jXu3bT220Q3ytab6EUV1nnXFiZaDo0tbL8JSq-O0UGpam9OdneK3u5uXxfLePV8_7CYr2LNuOhjoYERTROhi7QEqnIt0tCKpzLITElNQPLSGCp1ofM0T6jmLDE0JTnQUgk6RZfb3NDxczC-zxrrtalr1Ro3-EwmghApBQ3k-T-yckPXhnKZ5JLhRPIxbraFdOe870yZrTvbqG6TAc7GJbNxycfF6mFcMoNguNilKq9VXXaq1db_ughNGYGEBe5sy1W-d92fLiD8C4T-ANBWeoA</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Dai, Aiguo</creator><creator>Wang, Junhong</creator><creator>Thorne, Peter W.</creator><creator>Parker, David E.</creator><creator>Haimberger, Leopold</creator><creator>Wang, Xiaolan L.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20110215</creationdate><title>A New Approach to Homogenize Daily Radiosonde Humidity Data</title><author>Dai, Aiguo ; Wang, Junhong ; Thorne, Peter W. ; Parker, David E. ; Haimberger, Leopold ; Wang, Xiaolan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-6c142c376cd9f13abc690445984564a8c2185fee38cdcb9b73c547e392b13fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air temperature</topic><topic>Atmospherics</topic><topic>Climate change</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Histograms</topic><topic>Homogenization</topic><topic>Humidity</topic><topic>Hygrometers</topic><topic>Instrumentation</topic><topic>Metadata</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Radiosondes</topic><topic>Relative humidity</topic><topic>Sampling bias</topic><topic>Time series</topic><topic>Troposphere</topic><topic>Vapor pressure</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Aiguo</creatorcontrib><creatorcontrib>Wang, Junhong</creatorcontrib><creatorcontrib>Thorne, Peter W.</creatorcontrib><creatorcontrib>Parker, David E.</creatorcontrib><creatorcontrib>Haimberger, Leopold</creatorcontrib><creatorcontrib>Wang, Xiaolan L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Aiguo</au><au>Wang, Junhong</au><au>Thorne, Peter W.</au><au>Parker, David E.</au><au>Haimberger, Leopold</au><au>Wang, Xiaolan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Approach to Homogenize Daily Radiosonde Humidity Data</atitle><jtitle>Journal of climate</jtitle><date>2011-02-15</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>965</spage><epage>991</epage><pages>965-991</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Radiosonde humidity records represent the only in situ observations of tropospheric water vapor content with multidecadal length and quasi-global coverage. However, their use has been hampered by ubiquitous and large discontinuities resulting from changes to instrumentation and observing practices. Here a new approach is developed to homogenize historical records of tropospheric (up to 100 hPa) dewpoint depression (DPD), the archived radiosonde humidity parameter. Two statistical tests are used to detect changepoints, which are most apparent in histograms and occurrence frequencies of the daily DPD: a variant of the Kolmogorov–Smirnov (K–S) test for changes in distributions and the penalized maximalFtest (PMFred) for mean shifts in the occurrence frequency for different bins of DPD. These tests capture most of the apparent discontinuities in the daily DPD data, with an average of 8.6 changepoints (∼1 changepoint per 5 yr) in each of the analyzed radiosonde records, which begin as early as the 1950s and ended in March 2009. Before applying breakpoint adjustments, artificial sampling effects are first adjusted by estimating missing DPD reports for cold (T< −30°C) and dry (DPD artificially set to 30°C) conditions using empirical relationships at each station between the anomalies of air temperature and vapor pressure derived from recent observations when DPD reports are available under these conditions. Next, the sampling-adjusted DPD is detrended separately for each of the 4–10 quantile categories and then adjusted using a quantile-matching algorithm so that the earlier segments have histograms comparable to that of the latest segment. Neither the changepoint detection nor the adjustment uses a reference series given the stability of the DPD series.
Using this new approach, a homogenized global, twice-daily DPD dataset (available online at www.cgd.ucar.edu/cas/catalog/) is created for climate and other applications based on the Integrated Global Radiosonde Archive (IGRA) and two other data sources. The adjusted-daily DPD has much smaller and spatially more coherent trends during 1973–2008 than the raw data. It implies only small changes in relative humidity in the lower and middle troposphere. When combined with homogenized radiosonde temperature, other atmospheric humidity variables can be calculated, and these exhibit spatially more coherent trends than without the DPD homogenization. The DPD adjustment yields a different pattern of change in humidity parameters compared to the apparent trends from the raw data. The adjusted estimates show an increase in tropospheric water vapor globally.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2010jcli3816.1</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2011-02, Vol.24 (4), p.965-991 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_876228863 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing |
subjects | Air temperature Atmospherics Climate change Earth, ocean, space Exact sciences and technology External geophysics Histograms Homogenization Humidity Hygrometers Instrumentation Metadata Meteorological satellites Meteorology Radiosondes Relative humidity Sampling bias Time series Troposphere Vapor pressure Water vapor |
title | A New Approach to Homogenize Daily Radiosonde Humidity Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Approach%20to%20Homogenize%20Daily%20Radiosonde%20Humidity%20Data&rft.jtitle=Journal%20of%20climate&rft.au=Dai,%20Aiguo&rft.date=2011-02-15&rft.volume=24&rft.issue=4&rft.spage=965&rft.epage=991&rft.pages=965-991&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/2010jcli3816.1&rft_dat=%3Cjstor_proqu%3E26190412%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858407856&rft_id=info:pmid/&rft_jstor_id=26190412&rfr_iscdi=true |