Impaired fracture healing in macrophage migration inhibitory factor-deficient mice

Summary This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. Introduction W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Osteoporosis international 2011-06, Vol.22 (6), p.1955-1965
Hauptverfasser: Kobayashi, T., Onodera, S., Kondo, E., Tohyama, H., Fujiki, H., Yokoyama, A., Yasuda, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1965
container_issue 6
container_start_page 1955
container_title Osteoporosis international
container_volume 22
creator Kobayashi, T.
Onodera, S.
Kondo, E.
Tohyama, H.
Fujiki, H.
Yokoyama, A.
Yasuda, K.
description Summary This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. Introduction We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO). Methods Bone repair in wild-type mice (WT) and MIF KO ( n  = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed. Results Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus. Conclusion The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.
doi_str_mv 10.1007/s00198-010-1385-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_876226577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>876226577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-eefa138bf6bb9901c294f2469e35e89dfa50a2443f184a37514a5fad5ea1597b3</originalsourceid><addsrcrecordid>eNqFkV1LHDEUhkOp1K3tD-hNGQriVTSfk-RSRK0gCGKhd8OZzMluZD7WZObCf98su61QKL0KyXne95yTl5AvnJ1zxsxFZow7SxlnlEurKXtHVlxJSYWr9XuyYk4a6hT_eUw-5vzMisY584EcC2alNbVdkce7YQsxYVeFBH5eElYbhD6O6yqO1QA-TdsNrLEa4jrBHKexvG9iG-cpvVahSKZEOwzRRxznQnn8RI4C9Bk_H84T8uPm-unqO71_uL27urynXjk7U8QAZeo21G3rHONeOBWEqh1KjdZ1ATQDoZQM3CqQRnMFOkCnEbh2ppUn5Gzvu03Ty4J5boaYPfY9jDgtuSkLClFrY_5P1rWWQjpZyG9_kc_TksayRrHTWjql6wLxPVQ-J-eEodmmOEB6bThrdsE0-2AatruXYBpWNF8Pxks7YPdH8TuJApweAMge-pLG6GN-4xS3WpgdJ_ZcLqVxjeltwn93_wUdFaVR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>875539456</pqid></control><display><type>article</type><title>Impaired fracture healing in macrophage migration inhibitory factor-deficient mice</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kobayashi, T. ; Onodera, S. ; Kondo, E. ; Tohyama, H. ; Fujiki, H. ; Yokoyama, A. ; Yasuda, K.</creator><creatorcontrib>Kobayashi, T. ; Onodera, S. ; Kondo, E. ; Tohyama, H. ; Fujiki, H. ; Yokoyama, A. ; Yasuda, K.</creatorcontrib><description>Summary This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. Introduction We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO). Methods Bone repair in wild-type mice (WT) and MIF KO ( n  = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed. Results Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus. Conclusion The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.</description><identifier>ISSN: 0937-941X</identifier><identifier>EISSN: 1433-2965</identifier><identifier>DOI: 10.1007/s00198-010-1385-0</identifier><identifier>PMID: 20838768</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Alkaline Phosphatase - biosynthesis ; Alkaline Phosphatase - genetics ; Animals ; Biological and medical sciences ; Bone Remodeling - physiology ; Bones ; Bony Callus - pathology ; Bony Callus - physiopathology ; Calcification, Physiologic - physiology ; Cathepsin K - biosynthesis ; Cathepsin K - genetics ; Cell physiology ; Diseases of the osteoarticular system ; Endocrinology ; Fracture Fixation, Intramedullary - methods ; Fracture Healing - physiology ; Fractures ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genetics ; Injuries of the limb. Injuries of the spine ; Intramolecular Oxidoreductases - deficiency ; Intramolecular Oxidoreductases - physiology ; Macrophage Migration-Inhibitory Factors - deficiency ; Macrophage Migration-Inhibitory Factors - physiology ; Male ; Matrix Metalloproteinase 1 - biosynthesis ; Matrix Metalloproteinase 1 - genetics ; Matrix Metalloproteinase 2 - biosynthesis ; Matrix Metalloproteinase 2 - genetics ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Mice ; Mice, Inbred BALB C ; Mice, Knockout ; Mineralization, calcification ; Molecular and cellular biology ; Original Article ; Orthopedics ; Osteoporosis. Osteomalacia. Paget disease ; Radiography ; Real-Time Polymerase Chain Reaction - methods ; Rheumatology ; RNA, Messenger - genetics ; Rodents ; Stress, Mechanical ; Tibial Fractures - diagnostic imaging ; Tibial Fractures - pathology ; Tibial Fractures - physiopathology ; Tibial Fractures - surgery ; Traumas. Diseases due to physical agents ; Wound healing</subject><ispartof>Osteoporosis international, 2011-06, Vol.22 (6), p.1955-1965</ispartof><rights>International Osteoporosis Foundation and National Osteoporosis Foundation 2010</rights><rights>2015 INIST-CNRS</rights><rights>International Osteoporosis Foundation and National Osteoporosis Foundation 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-eefa138bf6bb9901c294f2469e35e89dfa50a2443f184a37514a5fad5ea1597b3</citedby><cites>FETCH-LOGICAL-c498t-eefa138bf6bb9901c294f2469e35e89dfa50a2443f184a37514a5fad5ea1597b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00198-010-1385-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00198-010-1385-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24185278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20838768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobayashi, T.</creatorcontrib><creatorcontrib>Onodera, S.</creatorcontrib><creatorcontrib>Kondo, E.</creatorcontrib><creatorcontrib>Tohyama, H.</creatorcontrib><creatorcontrib>Fujiki, H.</creatorcontrib><creatorcontrib>Yokoyama, A.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><title>Impaired fracture healing in macrophage migration inhibitory factor-deficient mice</title><title>Osteoporosis international</title><addtitle>Osteoporos Int</addtitle><addtitle>Osteoporos Int</addtitle><description>Summary This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. Introduction We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO). Methods Bone repair in wild-type mice (WT) and MIF KO ( n  = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed. Results Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus. Conclusion The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.</description><subject>Alkaline Phosphatase - biosynthesis</subject><subject>Alkaline Phosphatase - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bone Remodeling - physiology</subject><subject>Bones</subject><subject>Bony Callus - pathology</subject><subject>Bony Callus - physiopathology</subject><subject>Calcification, Physiologic - physiology</subject><subject>Cathepsin K - biosynthesis</subject><subject>Cathepsin K - genetics</subject><subject>Cell physiology</subject><subject>Diseases of the osteoarticular system</subject><subject>Endocrinology</subject><subject>Fracture Fixation, Intramedullary - methods</subject><subject>Fracture Healing - physiology</subject><subject>Fractures</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genetics</subject><subject>Injuries of the limb. Injuries of the spine</subject><subject>Intramolecular Oxidoreductases - deficiency</subject><subject>Intramolecular Oxidoreductases - physiology</subject><subject>Macrophage Migration-Inhibitory Factors - deficiency</subject><subject>Macrophage Migration-Inhibitory Factors - physiology</subject><subject>Male</subject><subject>Matrix Metalloproteinase 1 - biosynthesis</subject><subject>Matrix Metalloproteinase 1 - genetics</subject><subject>Matrix Metalloproteinase 2 - biosynthesis</subject><subject>Matrix Metalloproteinase 2 - genetics</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Knockout</subject><subject>Mineralization, calcification</subject><subject>Molecular and cellular biology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Osteoporosis. Osteomalacia. Paget disease</subject><subject>Radiography</subject><subject>Real-Time Polymerase Chain Reaction - methods</subject><subject>Rheumatology</subject><subject>RNA, Messenger - genetics</subject><subject>Rodents</subject><subject>Stress, Mechanical</subject><subject>Tibial Fractures - diagnostic imaging</subject><subject>Tibial Fractures - pathology</subject><subject>Tibial Fractures - physiopathology</subject><subject>Tibial Fractures - surgery</subject><subject>Traumas. Diseases due to physical agents</subject><subject>Wound healing</subject><issn>0937-941X</issn><issn>1433-2965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkV1LHDEUhkOp1K3tD-hNGQriVTSfk-RSRK0gCGKhd8OZzMluZD7WZObCf98su61QKL0KyXne95yTl5AvnJ1zxsxFZow7SxlnlEurKXtHVlxJSYWr9XuyYk4a6hT_eUw-5vzMisY584EcC2alNbVdkce7YQsxYVeFBH5eElYbhD6O6yqO1QA-TdsNrLEa4jrBHKexvG9iG-cpvVahSKZEOwzRRxznQnn8RI4C9Bk_H84T8uPm-unqO71_uL27urynXjk7U8QAZeo21G3rHONeOBWEqh1KjdZ1ATQDoZQM3CqQRnMFOkCnEbh2ppUn5Gzvu03Ty4J5boaYPfY9jDgtuSkLClFrY_5P1rWWQjpZyG9_kc_TksayRrHTWjql6wLxPVQ-J-eEodmmOEB6bThrdsE0-2AatruXYBpWNF8Pxks7YPdH8TuJApweAMge-pLG6GN-4xS3WpgdJ_ZcLqVxjeltwn93_wUdFaVR</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Kobayashi, T.</creator><creator>Onodera, S.</creator><creator>Kondo, E.</creator><creator>Tohyama, H.</creator><creator>Fujiki, H.</creator><creator>Yokoyama, A.</creator><creator>Yasuda, K.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20110601</creationdate><title>Impaired fracture healing in macrophage migration inhibitory factor-deficient mice</title><author>Kobayashi, T. ; Onodera, S. ; Kondo, E. ; Tohyama, H. ; Fujiki, H. ; Yokoyama, A. ; Yasuda, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-eefa138bf6bb9901c294f2469e35e89dfa50a2443f184a37514a5fad5ea1597b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alkaline Phosphatase - biosynthesis</topic><topic>Alkaline Phosphatase - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bone Remodeling - physiology</topic><topic>Bones</topic><topic>Bony Callus - pathology</topic><topic>Bony Callus - physiopathology</topic><topic>Calcification, Physiologic - physiology</topic><topic>Cathepsin K - biosynthesis</topic><topic>Cathepsin K - genetics</topic><topic>Cell physiology</topic><topic>Diseases of the osteoarticular system</topic><topic>Endocrinology</topic><topic>Fracture Fixation, Intramedullary - methods</topic><topic>Fracture Healing - physiology</topic><topic>Fractures</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genetics</topic><topic>Injuries of the limb. Injuries of the spine</topic><topic>Intramolecular Oxidoreductases - deficiency</topic><topic>Intramolecular Oxidoreductases - physiology</topic><topic>Macrophage Migration-Inhibitory Factors - deficiency</topic><topic>Macrophage Migration-Inhibitory Factors - physiology</topic><topic>Male</topic><topic>Matrix Metalloproteinase 1 - biosynthesis</topic><topic>Matrix Metalloproteinase 1 - genetics</topic><topic>Matrix Metalloproteinase 2 - biosynthesis</topic><topic>Matrix Metalloproteinase 2 - genetics</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Knockout</topic><topic>Mineralization, calcification</topic><topic>Molecular and cellular biology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Osteoporosis. Osteomalacia. Paget disease</topic><topic>Radiography</topic><topic>Real-Time Polymerase Chain Reaction - methods</topic><topic>Rheumatology</topic><topic>RNA, Messenger - genetics</topic><topic>Rodents</topic><topic>Stress, Mechanical</topic><topic>Tibial Fractures - diagnostic imaging</topic><topic>Tibial Fractures - pathology</topic><topic>Tibial Fractures - physiopathology</topic><topic>Tibial Fractures - surgery</topic><topic>Traumas. Diseases due to physical agents</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, T.</creatorcontrib><creatorcontrib>Onodera, S.</creatorcontrib><creatorcontrib>Kondo, E.</creatorcontrib><creatorcontrib>Tohyama, H.</creatorcontrib><creatorcontrib>Fujiki, H.</creatorcontrib><creatorcontrib>Yokoyama, A.</creatorcontrib><creatorcontrib>Yasuda, K.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Osteoporosis international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, T.</au><au>Onodera, S.</au><au>Kondo, E.</au><au>Tohyama, H.</au><au>Fujiki, H.</au><au>Yokoyama, A.</au><au>Yasuda, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired fracture healing in macrophage migration inhibitory factor-deficient mice</atitle><jtitle>Osteoporosis international</jtitle><stitle>Osteoporos Int</stitle><addtitle>Osteoporos Int</addtitle><date>2011-06-01</date><risdate>2011</risdate><volume>22</volume><issue>6</issue><spage>1955</spage><epage>1965</epage><pages>1955-1965</pages><issn>0937-941X</issn><eissn>1433-2965</eissn><abstract>Summary This study investigated the role of macrophage migration inhibitory factor (MIF) in fracture repair using MIF gene-deficient mice (MIF KO). Fracture healing was delayed in MIF KO, and this was mainly due to the delay in the mineralization of osteoid within the fracture callus. Introduction We previously reported that the expression of macrophage migration inhibitory factor (MIF) was up-regulated during the fracture healing process in rats. However, its role in the pathophysiology of this process remained unclear. The aim of the present study was to clarify the role of MIF in the fracture healing process using MIF gene-deficient mice (MIF KO). Methods Bone repair in wild-type mice (WT) and MIF KO ( n  = 70, respectively) was investigated using a tibia fracture model. Radiographic, biomechanical, histological, bone histomorphometric, and molecular analyses were performed. Results Post-fracture biomechanical testing showed that maximum load and stiffness were significantly lower in MIF KO than in WT on day 42. However, similar levels were observed between the two groups on day 84. Bone histomorphometric analysis revealed significantly higher osteoid volume, a lower mineral apposition rate, and smaller numbers of osteoclasts in the MIF KO callus compared to the WT callus. The messenger ribonucleic acid expressions of matrix metalloproteinase (MMP)-2, membranous type 1-MMP, cathepsin K, and tissue nonspecific alkaline phosphatase were found to be significantly suppressed in the MIF KO callus. Conclusion The results of the present study suggest that delayed fracture healing in MIF KO was mainly attributable to a delay in osteoid mineralization.</abstract><cop>London</cop><pub>Springer-Verlag</pub><pmid>20838768</pmid><doi>10.1007/s00198-010-1385-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-941X
ispartof Osteoporosis international, 2011-06, Vol.22 (6), p.1955-1965
issn 0937-941X
1433-2965
language eng
recordid cdi_proquest_miscellaneous_876226577
source MEDLINE; SpringerLink Journals
subjects Alkaline Phosphatase - biosynthesis
Alkaline Phosphatase - genetics
Animals
Biological and medical sciences
Bone Remodeling - physiology
Bones
Bony Callus - pathology
Bony Callus - physiopathology
Calcification, Physiologic - physiology
Cathepsin K - biosynthesis
Cathepsin K - genetics
Cell physiology
Diseases of the osteoarticular system
Endocrinology
Fracture Fixation, Intramedullary - methods
Fracture Healing - physiology
Fractures
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Genetics
Injuries of the limb. Injuries of the spine
Intramolecular Oxidoreductases - deficiency
Intramolecular Oxidoreductases - physiology
Macrophage Migration-Inhibitory Factors - deficiency
Macrophage Migration-Inhibitory Factors - physiology
Male
Matrix Metalloproteinase 1 - biosynthesis
Matrix Metalloproteinase 1 - genetics
Matrix Metalloproteinase 2 - biosynthesis
Matrix Metalloproteinase 2 - genetics
Medical sciences
Medicine
Medicine & Public Health
Mice
Mice, Inbred BALB C
Mice, Knockout
Mineralization, calcification
Molecular and cellular biology
Original Article
Orthopedics
Osteoporosis. Osteomalacia. Paget disease
Radiography
Real-Time Polymerase Chain Reaction - methods
Rheumatology
RNA, Messenger - genetics
Rodents
Stress, Mechanical
Tibial Fractures - diagnostic imaging
Tibial Fractures - pathology
Tibial Fractures - physiopathology
Tibial Fractures - surgery
Traumas. Diseases due to physical agents
Wound healing
title Impaired fracture healing in macrophage migration inhibitory factor-deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20fracture%20healing%20in%20macrophage%20migration%20inhibitory%20factor-deficient%20mice&rft.jtitle=Osteoporosis%20international&rft.au=Kobayashi,%20T.&rft.date=2011-06-01&rft.volume=22&rft.issue=6&rft.spage=1955&rft.epage=1965&rft.pages=1955-1965&rft.issn=0937-941X&rft.eissn=1433-2965&rft_id=info:doi/10.1007/s00198-010-1385-0&rft_dat=%3Cproquest_cross%3E876226577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=875539456&rft_id=info:pmid/20838768&rfr_iscdi=true